Goto

Collaborating Authors

 Mao, Yongqiang


RingMo-Aerial: An Aerial Remote Sensing Foundation Model With A Affine Transformation Contrastive Learning

arXiv.org Artificial Intelligence

Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and effectiveness of RingMo-Aerial in enhancing the performance of ARS vision tasks.


HeightFormer: A Multilevel Interaction and Image-adaptive Classification-regression Network for Monocular Height Estimation with Aerial Images

arXiv.org Artificial Intelligence

Height estimation has long been a pivotal topic within measurement and remote sensing disciplines, proving critical for endeavours such as 3D urban modelling, MR and autonomous driving. Traditional methods utilise stereo matching or multisensor fusion, both well-established techniques that typically necessitate multiple images from varying perspectives and adjunct sensors like SAR, leading to substantial deployment costs. Single image height estimation has emerged as an attractive alternative, boasting a larger data source variety and simpler deployment. However, current methods suffer from limitations such as fixed receptive fields, a lack of global information interaction, leading to noticeable instance-level height deviations. The inherent complexity of height prediction can result in a blurry estimation of object edge depth when using mainstream regression methods based on fixed height division. This paper presents a comprehensive solution for monocular height estimation in remote sensing, termed HeightFormer, combining multilevel interactions and image-adaptive classification-regression. It features the Multilevel Interaction Backbone (MIB) and Image-adaptive Classification-regression Height Generator (ICG). MIB supplements the fixed sample grid in CNN of the conventional backbone network with tokens of different interaction ranges. It is complemented by a pixel-, patch-, and feature map-level hierarchical interaction mechanism, designed to relay spatial geometry information across different scales and introducing a global receptive field to enhance the quality of instance-level height estimation. The ICG dynamically generates height partition for each image and reframes the traditional regression task, using a refinement from coarse to fine classification-regression that significantly mitigates the innate ill-posedness issue and drastically improves edge sharpness.