Mao, Yihuan
IBGP: Imperfect Byzantine Generals Problem for Zero-Shot Robustness in Communicative Multi-Agent Systems
Mao, Yihuan, Kang, Yipeng, Li, Peilun, Zhang, Ning, Xu, Wei, Zhang, Chongjie
As large language model (LLM) agents increasingly integrate into our infrastructure, their robust coordination and message synchronization become vital. The Byzantine Generals Problem (BGP) is a critical model for constructing resilient multi-agent systems (MAS) under adversarial attacks. It describes a scenario where malicious agents with unknown identities exist in the system-situations that, in our context, could result from LLM agents' hallucinations or external attacks. In BGP, the objective of the entire system is to reach a consensus on the action to be taken. Traditional BGP requires global consensus among all agents; however, in practical scenarios, global consensus is not always necessary and can even be inefficient. Therefore, there is a pressing need to explore a refined version of BGP that aligns with the local coordination patterns observed in MAS. We refer to this refined version as Imperfect BGP (IBGP) in our research, aiming to address this discrepancy. To tackle this issue, we propose a framework that leverages consensus protocols within general MAS settings, providing provable resilience against communication attacks and adaptability to changing environments, as validated by empirical results. Additionally, we present a case study in a sensor network environment to illustrate the practical application of our protocol.
SEIHAI: A Sample-efficient Hierarchical AI for the MineRL Competition
Mao, Hangyu, Wang, Chao, Hao, Xiaotian, Mao, Yihuan, Lu, Yiming, Wu, Chengjie, Hao, Jianye, Li, Dong, Tang, Pingzhong
The MineRL competition is designed for the development of reinforcement learning and imitation learning algorithms that can efficiently leverage human demonstrations to drastically reduce the number of environment interactions needed to solve the complex ObtainDiamond task with sparse rewards. To address the challenge, in this paper, we present SEIHAI, a Sample-efficient Hierarchical AI, that fully takes advantage of the human demonstrations and the task structure. Specifically, we split the task into several sequentially dependent subtasks, and train a suitable agent for each subtask using reinforcement learning and imitation learning. We further design a scheduler to select different agents for different subtasks automatically. SEIHAI takes the first place in the preliminary and final of the NeurIPS-2020 MineRL competition.
Towards robust and domain agnostic reinforcement learning competitions
Guss, William Hebgen, Milani, Stephanie, Topin, Nicholay, Houghton, Brandon, Mohanty, Sharada, Melnik, Andrew, Harter, Augustin, Buschmaas, Benoit, Jaster, Bjarne, Berganski, Christoph, Heitkamp, Dennis, Henning, Marko, Ritter, Helge, Wu, Chengjie, Hao, Xiaotian, Lu, Yiming, Mao, Hangyu, Mao, Yihuan, Wang, Chao, Opanowicz, Michal, Kanervisto, Anssi, Schraner, Yanick, Scheller, Christian, Zhou, Xiren, Liu, Lu, Nishio, Daichi, Tsuneda, Toi, Ramanauskas, Karolis, Juceviciute, Gabija
Reinforcement learning competitions have formed the basis for standard research benchmarks, galvanized advances in the state-of-the-art, and shaped the direction of the field. Despite this, a majority of challenges suffer from the same fundamental problems: participant solutions to the posed challenge are usually domain-specific, biased to maximally exploit compute resources, and not guaranteed to be reproducible. In this paper, we present a new framework of competition design that promotes the development of algorithms that overcome these barriers. We propose four central mechanisms for achieving this end: submission retraining, domain randomization, desemantization through domain obfuscation, and the limitation of competition compute and environment-sample budget. To demonstrate the efficacy of this design, we proposed, organized, and ran the MineRL 2020 Competition on Sample-Efficient Reinforcement Learning. In this work, we describe the organizational outcomes of the competition and show that the resulting participant submissions are reproducible, non-specific to the competition environment, and sample/resource efficient, despite the difficult competition task.