Goto

Collaborating Authors

 Mao, Jiaxin


PanguIR Technical Report for NTCIR-18 AEOLLM Task

arXiv.org Artificial Intelligence

As large language models (LLMs) gain widespread attention in both academia and industry, it becomes increasingly critical and challenging to effectively evaluate their capabilities. Existing evaluation methods can be broadly categorized into two types: manual evaluation and automatic evaluation. Manual evaluation, while comprehensive, is often costly and resource-intensive. Conversely, automatic evaluation offers greater scalability but is constrained by the limitations of its evaluation criteria (dominated by reference-based answers). To address these challenges, NTCIR-18 introduced the AEOLLM (Automatic Evaluation of LLMs) task, aiming to encourage reference-free evaluation methods that can overcome the limitations of existing approaches. In this paper, to enhance the evaluation performance of the AEOLLM task, we propose three key methods to improve the reference-free evaluation: 1) Multi-model Collaboration: Leveraging multiple LLMs to approximate human ratings across various subtasks; 2) Prompt Auto-optimization: Utilizing LLMs to iteratively refine the initial task prompts based on evaluation feedback from training samples; and 3) In-context Learning (ICL) Optimization: Based on the multi-task evaluation feedback, we train a specialized in-context example retrieval model, combined with a semantic relevance retrieval model, to jointly identify the most effective in-context learning examples. Experiments conducted on the final dataset demonstrate that our approach achieves superior performance on the AEOLLM task.


Evaluating Intelligence via Trial and Error

arXiv.org Artificial Intelligence

Intelligence is a crucial trait for species to find solutions within a limited number of trial-and-error attempts. Building on this idea, we introduce Survival Game as a framework to evaluate intelligence based on the number of failed attempts in a trial-and-error process. Fewer failures indicate higher intelligence. When the expectation and variance of failure counts are both finite, it signals the ability to consistently find solutions to new challenges, which we define as the Autonomous Level of intelligence. Using Survival Game, we comprehensively evaluate existing AI systems. Our results show that while AI systems achieve the Autonomous Level in simple tasks, they are still far from it in more complex tasks, such as vision, search, recommendation, and language. While scaling current AI technologies might help, this would come at an astronomical cost. Projections suggest that achieving the Autonomous Level for general tasks would require $10^{26}$ parameters. To put this into perspective, loading such a massive model requires so many H100 GPUs that their total value is $10^{7}$ times that of Apple Inc.'s market value. Even with Moore's Law, supporting such a parameter scale would take $70$ years. This staggering cost highlights the complexity of human tasks and the inadequacies of current AI technologies. To further investigate this phenomenon, we conduct a theoretical analysis of Survival Game and its experimental results. Our findings suggest that human tasks possess a criticality property. As a result, Autonomous Level requires a deep understanding of the task's underlying mechanisms. Current AI systems, however, do not fully grasp these mechanisms and instead rely on superficial mimicry, making it difficult for them to reach an autonomous level. We believe Survival Game can not only guide the future development of AI but also offer profound insights into human intelligence.


Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models, thereby minimizing hallucinations. A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation. However, these components are typically optimized separately through supervised fine-tuning, which can lead to misalignments between the objectives of individual modules and the overarching aim of generating accurate answers in question-answering (QA) tasks. Although recent efforts have explored reinforcement learning (RL) to optimize specific RAG components, these approaches often focus on overly simplistic pipelines with only two components or do not adequately address the complex interdependencies and collaborative interactions among the modules. To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent. Specifically, we present MMOA-RAG, a Multi-Module joint Optimization Algorithm for RAG, which employs multi-agent reinforcement learning to harmonize all agents' goals towards a unified reward, such as the F1 score of the final answer. Experiments conducted on various QA datasets demonstrate that MMOA-RAG improves the overall pipeline performance and outperforms existing baselines. Furthermore, comprehensive ablation studies validate the contributions of individual components and the adaptability of MMOA-RAG across different RAG components and datasets. The code of MMOA-RAG is on https://github.com/chenyiqun/MMOA-RAG.


Research on the Proximity Relationships of Psychosomatic Disease Knowledge Graph Modules Extracted by Large Language Models

arXiv.org Artificial Intelligence

As social changes accelerate, the incidence of psychosomatic disorders has significantly increased, becoming a major challenge in global health issues. This necessitates an innovative knowledge system and analytical methods to aid in diagnosis and treatment. Here, we establish the ontology model and entity types, using the BERT model and LoRA-tuned LLM for named entity recognition, constructing the knowledge graph with 9668 triples. Next, by analyzing the network distances between disease, symptom, and drug modules, it was found that closer network distances among diseases can predict greater similarities in their clinical manifestations, treatment approaches, and psychological mechanisms, and closer distances between symptoms indicate that they are more likely to co-occur. Lastly, by comparing the proximity d and proximity z score, it was shown that symptom-disease pairs in primary diagnostic relationships have a stronger association and are of higher referential value than those in diagnostic relationships. The research results revealed the potential connections between diseases, co-occurring symptoms, and similarities in treatment strategies, providing new perspectives for the diagnosis and treatment of psychosomatic disorders and valuable information for future mental health research and practice.


Leveraging Passage Embeddings for Efficient Listwise Reranking with Large Language Models

arXiv.org Artificial Intelligence

Recent studies have demonstrated the effectiveness of using large language language models (LLMs) in passage ranking. The listwise approaches, such as RankGPT, have become new state-of-the-art in this task. However, the efficiency of RankGPT models is limited by the maximum context length and relatively high latency of LLM inference. To address these issues, in this paper, we propose PE-Rank, leveraging the single passage embedding as a good context compression for efficient listwise passage reranking. By treating each passage as a special token, we can directly input passage embeddings into LLMs, thereby reducing input length. Additionally, we introduce an inference method that dynamically constrains the decoding space to these special tokens, accelerating the decoding process. For adapting the model to reranking, we employ listwise learning to rank loss for training. Evaluation results on multiple benchmarks demonstrate that PE-Rank significantly improves efficiency in both prefilling and decoding, while maintaining competitive ranking effectiveness. {The Code is available at \url{https://github.com/liuqi6777/pe_rank}.}


TourRank: Utilizing Large Language Models for Documents Ranking with a Tournament-Inspired Strategy

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are increasingly employed in zero-shot documents ranking, yielding commendable results. However, several significant challenges still persist in LLMs for ranking: (1) LLMs are constrained by limited input length, precluding them from processing a large number of documents simultaneously; (2) The output document sequence is influenced by the input order of documents, resulting in inconsistent ranking outcomes; (3) Achieving a balance between cost and ranking performance is quite challenging. To tackle these issues, we introduce a novel documents ranking method called TourRank, which is inspired by the tournament mechanism. This approach alleviates the impact of LLM's limited input length through intelligent grouping, while the tournament-like points system ensures robust ranking, mitigating the influence of the document input sequence. We test TourRank with different LLMs on the TREC DL datasets and the BEIR benchmark. Experimental results show that TourRank achieves state-of-the-art performance at a reasonable cost.


An Integrated Data Processing Framework for Pretraining Foundation Models

arXiv.org Artificial Intelligence

The ability of the foundation models heavily relies on large-scale, diverse, and high-quality pretraining data. In order to improve data quality, researchers and practitioners often have to manually curate datasets from difference sources and develop dedicated data cleansing pipeline for each data repository. Lacking a unified data processing framework, this process is repetitive and cumbersome. To mitigate this issue, we propose a data processing framework that integrates a Processing Module which consists of a series of operators at different granularity levels, and an Analyzing Module which supports probing and evaluation of the refined data. The proposed framework is easy to use and highly flexible. In this demo paper, we first introduce how to use this framework with some example use cases and then demonstrate its effectiveness in improving the data quality with an automated evaluation with ChatGPT and an end-to-end evaluation in pretraining the GPT-2 model. The code and demonstration videos are accessible on GitHub.


Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study

arXiv.org Artificial Intelligence

Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models. While the CLTR models can be theoretically unbiased when the user behavior assumption is correct and the propensity estimation is accurate, their effectiveness is usually empirically evaluated via simulation-based experiments due to a lack of widely-available, large-scale, real click logs. However, the mainstream simulation-based experiments are somewhat limited as they often feature a single, deterministic production ranker and simplified user simulation models to generate the synthetic click logs. As a result, the robustness of CLTR models in complex and diverse situations is largely unknown and needs further investigation. To address this problem, in this paper, we aim to investigate the robustness of existing CLTR models in a reproducibility study with extensive simulation-based experiments that (1) use both deterministic and stochastic production rankers, each with different ranking performance, and (2) leverage multiple user simulation models with different user behavior assumptions. We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation. Besides, the existing CLTR models often fail to outperform the naive click baselines when the production ranker has relatively high ranking performance or certain randomness, which suggests an urgent need for developing new CLTR algorithms that work for these settings.


Scaling Laws For Dense Retrieval

arXiv.org Artificial Intelligence

Scaling up neural models has yielded significant advancements in a wide array of tasks, particularly in language generation. Previous studies have found that the performance of neural models frequently adheres to predictable scaling laws, correlated with factors such as training set size and model size. This insight is invaluable, especially as large-scale experiments grow increasingly resource-intensive. Yet, such scaling law has not been fully explored in dense retrieval due to the discrete nature of retrieval metrics and complex relationships between training data and model sizes in retrieval tasks. In this study, we investigate whether the performance of dense retrieval models follows the scaling law as other neural models. We propose to use contrastive log-likelihood as the evaluation metric and conduct extensive experiments with dense retrieval models implemented with different numbers of parameters and trained with different amounts of annotated data. Results indicate that, under our settings, the performance of dense retrieval models follows a precise power-law scaling related to the model size and the number of annotations. Additionally, we examine scaling with prevalent data augmentation methods to assess the impact of annotation quality, and apply the scaling law to find the best resource allocation strategy under a budget constraint. We believe that these insights will significantly contribute to understanding the scaling effect of dense retrieval models and offer meaningful guidance for future research endeavors.


MA4DIV: Multi-Agent Reinforcement Learning for Search Result Diversification

arXiv.org Artificial Intelligence

The objective of search result diversification (SRD) is to ensure that selected documents cover as many different subtopics as possible. Existing methods primarily utilize a paradigm of "greedy selection", i.e., selecting one document with the highest diversity score at a time. These approaches tend to be inefficient and are easily trapped in a suboptimal state. In addition, some other methods aim to approximately optimize the diversity metric, such as $\alpha$-NDCG, but the results still remain suboptimal. To address these challenges, we introduce Multi-Agent reinforcement learning (MARL) for search result DIVersity, which called MA4DIV. In this approach, each document is an agent and the search result diversification is modeled as a cooperative task among multiple agents. This approach allows for directly optimizing the diversity metrics, such as $\alpha$-NDCG, while achieving high training efficiency. We conducted preliminary experiments on public TREC datasets to demonstrate the effectiveness and potential of MA4DIV. Considering the limited number of queries in public TREC datasets, we construct a large-scale dataset from industry sources and show that MA4DIV achieves substantial improvements in both effectiveness and efficiency than existing baselines on a industrial scale dataset.