Mao, Feng
A Concept and Argumentation based Interpretable Model in High Risk Domains
Chi, Haixiao, Wang, Dawei, Cui, Gaojie, Mao, Feng, Liao, Beishui
Interpretability has become an essential topic for artificial intelligence in some high-risk domains such as healthcare, bank and security. For commonly-used tabular data, traditional methods trained end-to-end machine learning models with numerical and categorical data only, and did not leverage human understandable knowledge such as data descriptions. Yet mining human-level knowledge from tabular data and using it for prediction remain a challenge. Therefore, we propose a concept and argumentation based model (CAM) that includes the following two components: a novel concept mining method to obtain human understandable concepts and their relations from both descriptions of features and the underlying data, and a quantitative argumentation-based method to do knowledge representation and reasoning. As a result of it, CAM provides decisions that are based on human-level knowledge and the reasoning process is intrinsically interpretable. Finally, to visualize the purposed interpretable model, we provide a dialogical explanation that contain dominated reasoning path within CAM. Experimental results on both open source benchmark dataset and real-word business dataset show that (1) CAM is transparent and interpretable, and the knowledge inside the CAM is coherent with human understanding; (2) Our interpretable approach can reach competitive results comparing with other state-of-art models.
Knowledge Amalgamation for Object Detection with Transformers
Zhang, Haofei, Mao, Feng, Xue, Mengqi, Fang, Gongfan, Feng, Zunlei, Song, Jie, Song, Mingli
Knowledge amalgamation (KA) is a novel deep model reusing task aiming to transfer knowledge from several well-trained teachers to a multi-talented and compact student. Currently, most of these approaches are tailored for convolutional neural networks (CNNs). However, there is a tendency that transformers, with a completely different architecture, are starting to challenge the domination of CNNs in many computer vision tasks. Nevertheless, directly applying the previous KA methods to transformers leads to severe performance degradation. In this work, we explore a more effective KA scheme for transformer-based object detection models. Specifically, considering the architecture characteristics of transformers, we propose to dissolve the KA into two aspects: sequence-level amalgamation (SA) and task-level amalgamation (TA). In particular, a hint is generated within the sequence-level amalgamation by concatenating teacher sequences instead of redundantly aggregating them to a fixed-size one as previous KA works. Besides, the student learns heterogeneous detection tasks through soft targets with efficiency in the task-level amalgamation. Extensive experiments on PASCAL VOC and COCO have unfolded that the sequence-level amalgamation significantly boosts the performance of students, while the previous methods impair the students. Moreover, the transformer-based students excel in learning amalgamated knowledge, as they have mastered heterogeneous detection tasks rapidly and achieved superior or at least comparable performance to those of the teachers in their specializations.
Small Boxes Big Data: A Deep Learning Approach to Optimize Variable Sized Bin Packing
Mao, Feng, Blanco, Edgar, Fu, Mingang, Jain, Rohit, Gupta, Anurag, Mancel, Sebastien, Yuan, Rong, Guo, Stephen, Kumar, Sai, Tian, Yayang
Bin Packing problems have been widely studied because of their broad applications in different domains. Known as a set of NP-hard problems, they have different vari- ations and many heuristics have been proposed for obtaining approximate solutions. Specifically, for the 1D variable sized bin packing problem, the two key sets of optimization heuristics are the bin assignment and the bin allocation. Usually the performance of a single static optimization heuristic can not beat that of a dynamic one which is tailored for each bin packing instance. Building such an adaptive system requires modeling the relationship between bin features and packing perform profiles. The primary drawbacks of traditional AI machine learnings for this task are the natural limitations of feature engineering, such as the curse of dimensionality and feature selection quality. We introduce a deep learning approach to overcome the drawbacks by applying a large training data set, auto feature selection and fast, accurate labeling. We show in this paper how to build such a system by both theoretical formulation and engineering practices. Our prediction system achieves up to 89% training accuracy and 72% validation accuracy to select the best heuristic that can generate a better quality bin packing solution.