Goto

Collaborating Authors

 Mao, Chengjun


FAN: Fatigue-Aware Network for Click-Through Rate Prediction in E-commerce Recommendation

arXiv.org Artificial Intelligence

Since clicks usually contain heavy noise, increasing research efforts have been devoted to modeling implicit negative user behaviors (i.e., non-clicks). However, they either rely on explicit negative user behaviors (e.g., dislikes) or simply treat non-clicks as negative feedback, failing to learn negative user interests comprehensively. In such situations, users may experience fatigue because of seeing too many similar recommendations. In this paper, we propose Fatigue-Aware Network (FAN), a novel CTR model that directly perceives user fatigue from non-clicks. Specifically, we first apply Fourier Transformation to the time series generated from non-clicks, obtaining its frequency spectrum which contains comprehensive information about user fatigue. Then the frequency spectrum is modulated by category information of the target item to model the bias that both the upper bound of fatigue and users' patience is different for different categories. Moreover, a gating network is adopted to model the confidence of user fatigue and an auxiliary task is designed to guide the learning of user fatigue, so we can obtain a well-learned fatigue representation and combine it with user interests for the final CTR prediction. Experimental results on real-world datasets validate the superiority of FAN and online A/B tests also show FAN outperforms representative CTR models significantly.


MOEF: Modeling Occasion Evolution in Frequency Domain for Promotion-Aware Click-Through Rate Prediction

arXiv.org Artificial Intelligence

Promotions are becoming more important and prevalent in e-commerce to attract customers and boost sales, leading to frequent changes of occasions, which drives users to behave differently. In such situations, most existing Click-Through Rate (CTR) models can't generalize well to online serving due to distribution uncertainty of the upcoming occasion. In this paper, we propose a novel CTR model named MOEF for recommendations under frequent changes of occasions. Firstly, we design a time series that consists of occasion signals generated from the online business scenario. Since occasion signals are more discriminative in the frequency domain, we apply Fourier Transformation to sliding time windows upon the time series, obtaining a sequence of frequency spectrum which is then processed by Occasion Evolution Layer (OEL). In this way, a high-order occasion representation can be learned to handle the online distribution uncertainty. Moreover, we adopt multiple experts to learn feature representations from multiple aspects, which are guided by the occasion representation via an attention mechanism. Accordingly, a mixture of feature representations is obtained adaptively for different occasions to predict the final CTR. Experimental results on real-world datasets validate the superiority of MOEF and online A/B tests also show MOEF outperforms representative CTR models significantly.