Goto

Collaborating Authors

 Manzagol, Pierre-Antoine


Reducing the variance in online optimization by transporting past gradients

arXiv.org Machine Learning

Most stochastic optimization methods use gradients once before discarding them. While variance reduction methods have shown that reusing past gradients can be beneficial when there is a finite number of datapoints, they do not easily extend to the online setting. One issue is the staleness due to using past gradients. We propose to correct this staleness using the idea of implicit gradient transport (IGT) which transforms gradients computed at previous iterates into gradients evaluated at the current iterate without using the Hessian explicitly. In addition to reducing the variance and bias of our updates over time, IGT can be used as a drop-in replacement for the gradient estimate in a number of well-understood methods such as heavy ball or Adam. We show experimentally that it achieves state-of-the-art results on a wide range of architectures and benchmarks. Additionally, the IGT gradient estimator yields the optimal asymptotic convergence rate for online stochastic optimization in the restricted setting where the Hessians of all component functions are equal.


Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples

arXiv.org Machine Learning

Few-shot classification refers to learning a classifier for new classes given only a few examples. While a plethora of models have emerged to tackle this recently, we find the current procedure and datasets that are used to systematically assess progress in this setting lacking. To address this, we propose Meta-Dataset: a new benchmark for training and evaluating few-shot classifiers that is large-scale, consists of multiple datasets, and presents more natural and realistic tasks. The aim is to measure the ability of state-of-the-art models to leverage diverse sources of data to achieve higher generalization, and to evaluate that generalization ability in a more challenging setting. We additionally measure robustness of current methods to variations in the number of available examples and the number of classes. Finally our extensive empirical evaluation leads us to identify weaknesses in Prototypical Networks and MAML, two popular few-shot classification methods, and to propose a new method, Proto-MAML, which achieves improved performance on our benchmark.


Negative eigenvalues of the Hessian in deep neural networks

arXiv.org Machine Learning

The loss function of deep networks is known to be non-convex but the precise nature of this nonconvexity is still an active area of research. In this work, we study the loss landscape of deep networks through the eigendecompositions of their Hessian matrix. In particular, we examine how important the negative eigenvalues are and the benefits one can observe in handling them appropriately.