Manuel Gomez Rodriguez
Deep Reinforcement Learning of Marked Temporal Point Processes
Utkarsh Upadhyay, Abir De, Manuel Gomez Rodriguez
Enhancing the Accuracy and Fairness of Human Decision Making
Isabel Valera, Adish Singla, Manuel Gomez Rodriguez
Teaching Multiple Concepts to a Forgetful Learner
Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla
How can we help a forgetful learner learn multiple concepts within a limited time frame? While there have been extensive studies in designing optimal schedules for teaching a single concept given a learner's memory model, existing approaches for teaching multiple concepts are typically based on heuristic scheduling techniques without theoretical guarantees. In this paper, we look at the problem from the perspective of discrete optimization and introduce a novel algorithmic framework for teaching multiple concepts with strong performance guarantees. Our framework is both generic, allowing the design of teaching schedules for different memory models, and also interactive, allowing the teacher to adapt the schedule to the underlying forgetting mechanisms of the learner. Furthermore, for a well-known memory model, we are able to identify a regime of model parameters where our framework is guaranteed to achieve high performance. We perform extensive evaluations using simulations along with real user studies in two concrete applications: (i) an educational app for online vocabulary teaching; and (ii) an app for teaching novices how to recognize animal species from images. Our results demonstrate the effectiveness of our algorithm compared to popular heuristic approaches.
COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution
Mehrdad Farajtabar, Yichen Wang, Manuel Gomez Rodriguez, Shuang Li, Hongyuan Zha, Le Song
Information diffusion in online social networks is affected by the underlying network topology, but it also has the power to change it. Online users are constantly creating new links when exposed to new information sources, and in turn these links are alternating the way information spreads. However, these two highly intertwined stochastic processes, information diffusion and network evolution, have been predominantly studied separately, ignoring their co-evolutionary dynamics. We propose a temporal point process model, COEVOLVE, for such joint dynamics, allowing the intensity of one process to be modulated by that of the other. This model allows us to efficiently simulate interleaved diffusion and network events, and generate traces obeying common diffusion and network patterns observed in real-world networks. Furthermore, we also develop a convex optimization framework to learn the parameters of the model from historical diffusion and network evolution traces. We experimented with both synthetic data and data gathered from Twitter, and show that our model provides a good fit to the data as well as more accurate predictions than alternatives.
Teaching Multiple Concepts to a Forgetful Learner
Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla
How can we help a forgetful learner learn multiple concepts within a limited time frame? While there have been extensive studies in designing optimal schedules for teaching a single concept given a learner's memory model, existing approaches for teaching multiple concepts are typically based on heuristic scheduling techniques without theoretical guarantees. In this paper, we look at the problem from the perspective of discrete optimization and introduce a novel algorithmic framework for teaching multiple concepts with strong performance guarantees. Our framework is both generic, allowing the design of teaching schedules for different memory models, and also interactive, allowing the teacher to adapt the schedule to the underlying forgetting mechanisms of the learner. Furthermore, for a well-known memory model, we are able to identify a regime of model parameters where our framework is guaranteed to achieve high performance. We perform extensive evaluations using simulations along with real user studies in two concrete applications: (i) an educational app for online vocabulary teaching; and (ii) an app for teaching novices how to recognize animal species from images. Our results demonstrate the effectiveness of our algorithm compared to popular heuristic approaches.
Learning and Forecasting Opinion Dynamics in Social Networks
Abir De, Isabel Valera, Niloy Ganguly, Sourangshu Bhattacharya, Manuel Gomez Rodriguez
Social media and social networking sites have become a global pinboard for exposition and discussion of news, topics, and ideas, where social media users often update their opinions about a particular topic by learning from the opinions shared by their friends. In this context, can we learn a data-driven model of opinion dynamics that is able to accurately forecast users' opinions? In this paper, we introduce SLANT, a probabilistic modeling framework of opinion dynamics, which represents users' opinions over time by means of marked jump diffusion stochastic differential equations, and allows for efficient model simulation and parameter estimation from historical fine grained event data. We then leverage our framework to derive a set of efficient predictive formulas for opinion forecasting and identify conditions under which opinions converge to a steady state. Experiments on data gathered from Twitter show that our model provides a good fit to the data and our formulas achieve more accurate forecasting than alternatives.
Deep Reinforcement Learning of Marked Temporal Point Processes
Utkarsh Upadhyay, Abir De, Manuel Gomez Rodriguez
Can we design online interventions that will help humans achieve certain goals in such asynchronous setting? In this paper, we address the above problem from the perspective of deep reinforcement learning of marked temporal point processes, where both the actions taken by an agent and the feedback it receives from the environment are asynchronous stochastic discrete events characterized using marked temporal point processes. In doing so, we define the agent's policy using the intensity and mark distribution of the corresponding process and then derive a flexible policy gradient method, which embeds the agent's actions and the feedback it receives into real-valued vectors using deep recurrent neural networks. Our method does not make any assumptions on the functional form of the intensity and mark distribution of the feedback and it allows for arbitrarily complex reward functions. We apply our methodology to two different applications in personalized teaching and viral marketing and, using data gathered from Duolingo and Twitter, we show that it may be able to find interventions to help learners and marketers achieve their goals more effectively than alternatives.
Enhancing the Accuracy and Fairness of Human Decision Making
Isabel Valera, Adish Singla, Manuel Gomez Rodriguez
Societies often rely on human experts to take a wide variety of decisions affecting their members, from jail-or-release decisions taken by judges and stop-and-frisk decisions taken by police officers to accept-or-reject decisions taken by academics. In this context, each decision is taken by an expert who is typically chosen uniformly at random from a pool of experts. However, these decisions may be imperfect due to limited experience, implicit biases, or faulty probabilistic reasoning. Can we improve the accuracy and fairness of the overall decision making process by optimizing the assignment between experts and decisions? In this paper, we address the above problem from the perspective of sequential decision making and show that, for different fairness notions in the literature, it reduces to a sequence of (constrained) weighted bipartite matchings, which can be solved efficiently using algorithms with approximation guarantees. Moreover, these algorithms also benefit from posterior sampling to actively trade off exploitation--selecting expert assignments which lead to accurate and fair decisions--and exploration--selecting expert assignments to learn about the experts' preferences. We demonstrate the effectiveness of our algorithms on both synthetic and real-world data and show that they can significantly improve both the accuracy and fairness of the decisions taken by pools of experts.