Goto

Collaborating Authors

 Mansoury, Masoud


Career Path Recommendations for Long-term Income Maximization: A Reinforcement Learning Approach

arXiv.org Artificial Intelligence

This study explores the potential of reinforcement learning algorithms to enhance career planning processes. Leveraging data from Randstad The Netherlands, the study simulates the Dutch job market and develops strategies to optimize employees' long-term income. By formulating career planning as a Markov Decision Process (MDP) and utilizing machine learning algorithms such as Sarsa, Q-Learning, and A2C, we learn optimal policies that recommend career paths with high-income occupations and industries. The results demonstrate significant improvements in employees' income trajectories, with RL models, particularly Q-Learning and Sarsa, achieving an average increase of 5% compared to observed career paths. The study acknowledges limitations, including narrow job filtering, simplifications in the environment formulation, and assumptions regarding employment continuity and zero application costs. Future research can explore additional objectives beyond income optimization and address these limitations to further enhance career planning processes.


A Graph-based Approach for Mitigating Multi-sided Exposure Bias in Recommender Systems

arXiv.org Artificial Intelligence

Fairness is a critical system-level objective in recommender systems that has been the subject of extensive recent research. A specific form of fairness is supplier exposure fairness where the objective is to ensure equitable coverage of items across all suppliers in recommendations provided to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end-user, but also for other stakeholders such as item sellers or producers who desire a fair representation of their items. This type of supplier fairness is sometimes accomplished by attempting to increasing aggregate diversity in order to mitigate popularity bias and to improve the coverage of long-tail items in recommendations. In this paper, we introduce FairMatch, a general graph-based algorithm that works as a post processing approach after recommendation generation to improve exposure fairness for items and suppliers. The algorithm iteratively adds high quality items that have low visibility or items from suppliers with low exposure to the users' final recommendation lists. A comprehensive set of experiments on two datasets and comparison with state-of-the-art baselines show that FairMatch, while significantly improves exposure fairness and aggregate diversity, maintains an acceptable level of relevance of the recommendations.


User-centered Evaluation of Popularity Bias in Recommender Systems

arXiv.org Artificial Intelligence

Recommendation and ranking systems are known to suffer from popularity bias; the tendency of the algorithm to favor a few popular items while under-representing the majority of other items. Prior research has examined various approaches for mitigating popularity bias and enhancing the recommendation of long-tail, less popular, items. The effectiveness of these approaches is often assessed using different metrics to evaluate the extent to which over-concentration on popular items is reduced. However, not much attention has been given to the user-centered evaluation of this bias; how different users with different levels of interest towards popular items are affected by such algorithms. In this paper, we show the limitations of the existing metrics to evaluate popularity bias mitigation when we want to assess these algorithms from the users' perspective and we propose a new metric that can address these limitations. In addition, we present an effective approach that mitigates popularity bias from the user-centered point of view. Finally, we investigate several state-of-the-art approaches proposed in recent years to mitigate popularity bias and evaluate their performances using the existing metrics and also from the users' perspective. Our experimental results using two publicly-available datasets show that existing popularity bias mitigation techniques ignore the users' tolerance towards popular items. Our proposed user-centered method can tackle popularity bias effectively for different users while also improving the existing metrics.


Investigating Potential Factors Associated with Gender Discrimination in Collaborative Recommender Systems

AAAI Conferences

The proliferation of personalized recommendation technologies has raised concerns about discrepancies in their recommendation performance across different genders, age groups, and racial or ethnic populations. This varying degree of performance could impact users’ trust in the system and may pose legal and ethical issues in domains where fairness and equity are critical concerns, like job recommendation. In this paper, we investigate several potential factors that could be associated with discriminatory performance of a recommendation algorithm for women versus men. We specifically study several characteristics of user profiles and analyze their possible associations with disparate behavior of the system towards different genders. These characteristics include the anomaly in rating behavior, the entropy of users’ profiles, and the users’ profile size. Our experimental results on a public dataset using four recommendation algorithms show that, based on all the three mentioned factors, women get less accurate recommendations than men indicating an unfair nature of recommendation algorithms across genders.