Mallozzi, Piergiuseppe
Correct-by-Construction Design of Contextual Robotic Missions Using Contracts
Mallozzi, Piergiuseppe, Nuzzo, Pierluigi, Piterman, Nir, Schneider, Gerardo, Pelliccione, Patrizio
Effectively specifying and implementing robotic missions poses a set of challenges to software engineering for robotic systems. These challenges stem from the need to formalize and execute a robot's high-level tasks while considering various application scenarios and conditions, also known as contexts, in real-world operational environments. Writing correct mission specifications that explicitly account for multiple contexts can be tedious and error-prone. Furthermore, as the number of contexts, and consequently the complexity of the specification, increases, generating a correct-by-construction implementation (e.g., by using synthesis methods) can become intractable. A viable approach to address these issues is to decompose the mission specification into smaller, manageable sub-missions, with each sub-mission tailored to a specific context. Nevertheless, this compositional approach introduces its own set of challenges in ensuring the overall mission's correctness. In this paper, we propose a novel compositional framework for specifying and implementing contextual robotic missions using assume-guarantee contracts. The mission specification is structured in a hierarchical and modular fashion, allowing for each sub-mission to be synthesized as an independent robot controller. We address the problem of dynamically switching between sub-mission controllers while ensuring correctness under predefined conditions.
A Grammar for the Representation of Unmanned Aerial Vehicles with 3D Topologies
Mallozzi, Piergiuseppe, Sibai, Hussein, Incer, Inigo, Seshia, Sanjit A., Sangiovanni-Vincentelli, Alberto
We propose a context-sensitive grammar for the systematic exploration of the design space of the topology of 3D robots, particularly unmanned aerial vehicles. It defines production rules for adding components to an incomplete design topology modeled over a 3D grid. The rules are local. The grammar is simple, yet capable of modeling most existing UAVs as well as novel ones. It can be easily generalized to other robotic platforms. It can be thought of as a building block for any design exploration and optimization algorithm.
Contract-Based Specification Refinement and Repair for Mission Planning
Mallozzi, Piergiuseppe, Incer, Inigo, Nuzzo, Pierluigi, Sangiovanni-Vincentelli, Alberto
We address the problem of modeling, refining, and repairing formal specifications for robotic missions using assume-guarantee contracts. We show how to model mission specifications at various levels of abstraction and implement them using a library of pre-implemented specifications. Suppose the specification cannot be met using components from the library. In that case, we compute a proxy for the best approximation to the specification that can be generated using elements from the library. Afterward, we propose a systematic way to either 1) search for and refine the `missing part' of the specification that the library cannot meet or 2) repair the current specification such that the existing library can refine it. Our methodology for searching and repairing mission requirements leverages the quotient, separation, composition, and merging operations between contracts.