Goto

Collaborating Authors

 Mallmann-Trenn, Frederik


Trading-off Accuracy and Communication Cost in Federated Learning

arXiv.org Artificial Intelligence

Leveraging the training-by-pruning paradigm introduced by Zhou et al. and Isik et al. introduced a federated learning protocol that achieves a 34-fold reduction in communication cost. We achieve a compression improvements of orders of orders of magnitude over the state-of-the-art. The central idea of our framework is to encode the network weights $\vec w$ by a the vector of trainable parameters $\vec p$, such that $\vec w = Q\cdot \vec p$ where $Q$ is a carefully-generate sparse random matrix (that remains fixed throughout training). In such framework, the previous work of Zhou et al. [NeurIPS'19] is retrieved when $Q$ is diagonal and $\vec p$ has the same dimension of $\vec w$. We instead show that $\vec p$ can effectively be chosen much smaller than $\vec w$, while retaining the same accuracy at the price of a decrease of the sparsity of $Q$. Since server and clients only need to share $\vec p$, such a trade-off leads to a substantial improvement in communication cost. Moreover, we provide theoretical insight into our framework and establish a novel link between training-by-sampling and random convex geometry.


Voter Model Meets Rumour Spreading: A Study of Consensus Protocols on Graphs with Agnostic Nodes [Extended Version]

arXiv.org Artificial Intelligence

Problems of consensus in multi-agent systems are often viewed as a series of independent, simultaneous local decisions made between a limited set of options, all aimed at reaching a global agreement. Key challenges in these protocols include estimating the likelihood of various outcomes and finding bounds for how long it may take to achieve consensus, if it occurs at all. To date, little attention has been given to the case where some agents have no initial opinion. In this paper, we introduce a variant of the consensus problem which includes what we call `agnostic' nodes and frame it as a combination of two known and well-studied processes: voter model and rumour spreading. We show (1) a martingale that describes the probability of consensus for a given colour, (2) bounds on the number of steps for the process to end using results from rumour spreading and voter models, (3) closed formulas for the probability of consensus in a few special cases, and (4) that the computational complexity of estimating the probability with a Markov chain Monte Carlo process is $O(n^2 \log n)$ for general graphs and $O(n\log n)$ for Erd\H{o}s-R\'enyi graphs, which makes it an efficient method for estimating probabilities of consensus. Furthermore, we present experimental results suggesting that the number of runs needed for a given standard error decreases when the number of nodes increases.


On the Sparsity of the Strong Lottery Ticket Hypothesis

arXiv.org Machine Learning

Considerable research efforts have recently been made to show that a random neural network $N$ contains subnetworks capable of accurately approximating any given neural network that is sufficiently smaller than $N$, without any training. This line of research, known as the Strong Lottery Ticket Hypothesis (SLTH), was originally motivated by the weaker Lottery Ticket Hypothesis, which states that a sufficiently large random neural network $N$ contains \emph{sparse} subnetworks that can be trained efficiently to achieve performance comparable to that of training the entire network $N$. Despite its original motivation, results on the SLTH have so far not provided any guarantee on the size of subnetworks. Such limitation is due to the nature of the main technical tool leveraged by these results, the Random Subset Sum (RSS) Problem. Informally, the RSS Problem asks how large a random i.i.d. sample $\Omega$ should be so that we are able to approximate any number in $[-1,1]$, up to an error of $ \epsilon$, as the sum of a suitable subset of $\Omega$. We provide the first proof of the SLTH in classical settings, such as dense and equivariant networks, with guarantees on the sparsity of the subnetworks. Central to our results, is the proof of an essentially tight bound on the Random Fixed-Size Subset Sum Problem (RFSS), a variant of the RSS Problem in which we only ask for subsets of a given size, which is of independent interest.


Distributed Averaging in Opinion Dynamics

arXiv.org Artificial Intelligence

We consider two simple asynchronous opinion dynamics on arbitrary graphs where every node $u$ has an initial value $\xi_u(0)$. In the first process, the NodeModel, at each time step $t\ge 0$, a random node $u$ and a random sample of $k$ of its neighbours $v_1,v_2,\cdots,v_k$ are selected. Then, $u$ updates its current value $\xi_u(t)$ to $\xi_u(t+1) = \alpha \xi_u(t) + \frac{(1-\alpha)}{k} \sum_{i=1}^k \xi_{v_i}(t)$, where $\alpha \in (0,1)$ and $k\ge 1$ are parameters of the process. In the second process, the EdgeModel, at each step a random pair of adjacent nodes $(u,v)$ is selected, and then node $u$ updates its value equivalently to the NodeModel with $k=1$ and $v$ as the selected neighbour. For both processes, the values of all nodes converge to $F$, a random variable depending on the random choices made in each step. For the NodeModel and regular graphs, and for the EdgeModel and arbitrary graphs, the expectation of $F$ is the average of the initial values $\frac{1}{n}\sum_{u\in V} \xi_u(0)$. For the NodeModel and non-regular graphs, the expectation of $F$ is the degree-weighted average of the initial values. Our results are two-fold. We consider the concentration of $F$ and show tight bounds on the variance of $F$ for regular graphs. We show that, when the initial values do not depend on the number of nodes, then the variance is negligible, hence the nodes are able to estimate the initial average of the node values. Interestingly, this variance does not depend on the graph structure. For the proof we introduce a duality between our processes and a process of two correlated random walks. We also analyse the convergence time for both models and for arbitrary graphs, showing bounds on the time $T_\varepsilon$ required to make all node values `$\varepsilon$-close' to each other. Our bounds are asymptotically tight under assumptions on the distribution of the initial values.


Dynamic Crowd Vetting: Collaborative Detection of Malicious Robots in Dynamic Communication Networks

arXiv.org Artificial Intelligence

Coordination in a large number of networked robots is a challenging task, especially when robots are constantly moving around the environment and there are malicious attacks within the network. Various approaches in the literature exist for detecting malicious robots, such as message sampling or suspicious behavior analysis. However, these approaches require every robot to sample every other robot in the network, leading to a slow detection process that degrades team performance. This paper introduces a method that significantly decreases the detection time for legitimate robots to identify malicious robots in a scenario where legitimate robots are randomly moving around the environment. Our method leverages the concept of ``Dynamic Crowd Vetting" by utilizing observations from random encounters and trusted neighboring robots' opinions to quickly improve the accuracy of detecting malicious robots. The key intuition is that as long as each legitimate robot accurately estimates the legitimacy of at least some fixed subset of the team, the second-hand information they receive from trusted neighbors is enough to correct any misclassifications and provide accurate trust estimations of the rest of the team. We show that the size of this fixed subset can be characterized as a function of fundamental graph and random walk properties. Furthermore, we formally show that as the number of robots in the team increases the detection time remains constant. We develop a closed form expression for the critical number of time-steps required for our algorithm to successfully identify the true legitimacy of each robot to within a specified failure probability. Our theoretical results are validated through simulations demonstrating significant reductions in detection time when compared to previous works that do not leverage trusted neighbor information.


Learning Hierarchically Structured Concepts

arXiv.org Artificial Intelligence

We study the question of how concepts that have structure get represented in the brain. Specifically, we introduce a model for hierarchically structured concepts and we show how a biologically plausible neural network can recognize these concepts, and how it can learn them in the first place. Our main goal is to introduce a general framework for these tasks and prove formally how both (recognition and learning) can be achieved. We show that both tasks can be accomplished even in presence of noise. For learning, we analyze Oja's rule formally, a well-known biologically-plausible rule for adjusting the weights of synapses. We complement the learning results with lower bounds asserting that, in order to recognize concepts of a certain hierarchical depth, neural networks must have a corresponding number of layers.


Clustering Redemption–Beyond the Impossibility of Kleinberg’s Axioms

Neural Information Processing Systems

Kleinberg [20] stated three axioms that any clustering procedure should satisfy and showed there is no clustering procedure that simultaneously satisfies all three. One of these, called the consistency axiom, requires that when the data is modified in a helpful way, i.e. if points in the same cluster are made more similar and those in different ones made less similar, the algorithm should output the same clustering. To circumvent this impossibility result, research has focused on considering clustering procedures that have a clustering quality measure (or a cost) and showing that a modification of Kleinberg's axioms that takes cost into account lead to feasible clustering procedures. In this work, we take a different approach, based on the observation that the consistency axiom fails to be satisfied when the "correct" number of clusters changes. We modify this axiom by making use of cost functions to determine the correct number of clusters, and require that consistency holds only if the number of clusters remains unchanged. We show that single linkage satisfies the modified axioms, and if the input is well-clusterable, some popular procedures such as k-means also satisfy the axioms, taking a step towards explaining the success of these objective functions for guiding the design of algorithms. 1 Introduction In a highly influential paper, Kleinberg [20] showed that clustering is impossible in the following sense: there exists no clustering function, i.e. a function that takes a point-set and a pairwise dis-similarity function


Clustering Redemption–Beyond the Impossibility of Kleinberg’s Axioms

Neural Information Processing Systems

Kleinberg (2002) stated three axioms that any clustering procedure should satisfy and showed there is no clustering procedure that simultaneously satisfies all three. One of these, called the consistency axiom, requires that when the data is modified in a helpful way, i.e. if points in the same cluster are made more similar and those in different ones made less similar, the algorithm should output the same clustering. To circumvent this impossibility result, research has focused on considering clustering procedures that have a clustering quality measure (or a cost) and showing that a modification of Kleinberg’s axioms that takes cost into account lead to feasible clustering procedures. In this work, we take a different approach, based on the observation that the consistency axiom fails to be satisfied when the “correct” number of clusters changes. We modify this axiom by making use of cost functions to determine the correct number of clusters, and require that consistency holds only if the number of clusters remains unchanged. We show that single linkage satisfies the modified axioms, and if the input is well-clusterable, some popular procedures such as k-means also satisfy the axioms, taking a step towards explaining the success of these objective functions for guiding the design of algorithms.


Hierarchical Clustering Beyond the Worst-Case

Neural Information Processing Systems

Hiererachical clustering, that is computing a recursive partitioning of a dataset to obtain clusters at increasingly finer granularity is a fundamental problem in data analysis. Although hierarchical clustering has mostly been studied through procedures such as linkage algorithms, or top-down heuristics, rather than as optimization problems, recently Dasgupta [1] proposed an objective function for hierarchical clustering and initiated a line of work developing algorithms that explicitly optimize an objective (see also [2, 3, 4]). In this paper, we consider a fairly general random graph model for hierarchical clustering, called the hierarchical stochastic blockmodel (HSBM), and show that in certain regimes the SVD approach of McSherry [5] combined with specific linkage methods results in a clustering that give an O(1)-approximation to Dasgupta’s cost function. We also show that an approach based on SDP relaxations for balanced cuts based on the work of Makarychev et al. [6], combined with the recursive sparsest cut algorithm of Dasgupta, yields an O(1) approximation in slightly larger regimes and also in the semi-random setting, where an adversary may remove edges from the random graph generated according to an HSBM. Finally, we report empirical evaluation on synthetic and real-world data showing that our proposed SVD-based method does indeed achieve a better cost than other widely-used heurstics and also results in a better classification accuracy when the underlying problem was that of multi-class classification.