Goto

Collaborating Authors

 Malkomes, Gustavo


Group SELFIES: A Robust Fragment-Based Molecular String Representation

arXiv.org Artificial Intelligence

We introduce Group SELFIES, a molecular string representation that leverages group tokens to represent functional groups or entire substructures while maintaining chemical robustness guarantees. Molecular string representations, such as SMILES and SELFIES, serve as the basis for molecular generation and optimization in chemical language models, deep generative models, and evolutionary methods. While SMILES and SELFIES leverage atomic representations, Group SELFIES builds on top of the chemical robustness guarantees of SELFIES by enabling group tokens, thereby creating additional flexibility to the representation. Moreover, the group tokens in Group SELFIES can take advantage of inductive biases of molecular fragments that capture meaningful chemical motifs. The advantages of capturing chemical motifs and flexibility are demonstrated in our experiments, which show that Group SELFIES improves distribution learning of common molecular datasets. Further experiments also show that random sampling of Group SELFIES strings improves the quality of generated molecules compared to regular SELFIES strings. Our open-source implementation of Group SELFIES is available online, which we hope will aid future research in molecular generation and optimization.


Efficient nonmyopic batch active search

Neural Information Processing Systems

Active search is a learning paradigm for actively identifying as many members of a given class as possible. A critical target scenario is high-throughput screening for scientific discovery, such as drug or materials discovery. In these settings, specialized instruments can often evaluate \emph{multiple} points simultaneously; however, all existing work on active search focuses on sequential acquisition. We first derive the Bayesian optimal policy for this problem, then prove a lower bound on the performance gap between sequential and batch optimal policies: the cost of parallelization.'' We also propose novel, efficient batch policies inspired by state-of-the-art sequential policies, and develop an aggressive pruning technique that can dramatically speed up computation.


Automating Bayesian optimization with Bayesian optimization

Neural Information Processing Systems

Bayesian optimization is a powerful tool for global optimization of expensive functions. One of its key components is the underlying probabilistic model used for the objective function f. In practice, however, it is often unclear how one should appropriately choose a model, especially when gathering data is expensive. In this work, we introduce a novel automated Bayesian optimization approach that dynamically selects promising models for explaining the observed data using Bayesian Optimization in the model space. Crucially, we account for the uncertainty in the choice of model; our method is capable of using multiple models to represent its current belief about f and subsequently using this information for decision making. We argue, and demonstrate empirically, that our approach automatically finds suitable models for the objective function, which ultimately results in more-efficient optimization.


Efficient nonmyopic batch active search

Neural Information Processing Systems

Active search is a learning paradigm for actively identifying as many members of a given class as possible. A critical target scenario is high-throughput screening for scientific discovery, such as drug or materials discovery. In these settings, specialized instruments can often evaluate \emph{multiple} points simultaneously; however, all existing work on active search focuses on sequential acquisition. We bridge this gap, addressing batch active search from both the theoretical and practical perspective. We first derive the Bayesian optimal policy for this problem, then prove a lower bound on the performance gap between sequential and batch optimal policies: the ``cost of parallelization.'' We also propose novel, efficient batch policies inspired by state-of-the-art sequential policies, and develop an aggressive pruning technique that can dramatically speed up computation. We conduct thorough experiments on data from three application domains: a citation network, material science, and drug discovery, testing all proposed policies (14 total) with a wide range of batch sizes. Our results demonstrate that the empirical performance gap matches our theoretical bound, that nonmyopic policies usually significantly outperform myopic alternatives, and that diversity is an important consideration for batch policy design.


Automating Bayesian optimization with Bayesian optimization

Neural Information Processing Systems

Bayesian optimization is a powerful tool for global optimization of expensive functions. One of its key components is the underlying probabilistic model used for the objective function f. In practice, however, it is often unclear how one should appropriately choose a model, especially when gathering data is expensive. In this work, we introduce a novel automated Bayesian optimization approach that dynamically selects promising models for explaining the observed data using Bayesian Optimization in the model space. Crucially, we account for the uncertainty in the choice of model; our method is capable of using multiple models to represent its current belief about f and subsequently using this information for decision making. We argue, and demonstrate empirically, that our approach automatically finds suitable models for the objective function, which ultimately results in more-efficient optimization.


Efficient nonmyopic batch active search

Neural Information Processing Systems

Active search is a learning paradigm for actively identifying as many members of a given class as possible. A critical target scenario is high-throughput screening for scientific discovery, such as drug or materials discovery. In these settings, specialized instruments can often evaluate \emph{multiple} points simultaneously; however, all existing work on active search focuses on sequential acquisition. We bridge this gap, addressing batch active search from both the theoretical and practical perspective. We first derive the Bayesian optimal policy for this problem, then prove a lower bound on the performance gap between sequential and batch optimal policies: the ``cost of parallelization.'' We also propose novel, efficient batch policies inspired by state-of-the-art sequential policies, and develop an aggressive pruning technique that can dramatically speed up computation. We conduct thorough experiments on data from three application domains: a citation network, material science, and drug discovery, testing all proposed policies (14 total) with a wide range of batch sizes. Our results demonstrate that the empirical performance gap matches our theoretical bound, that nonmyopic policies usually significantly outperform myopic alternatives, and that diversity is an important consideration for batch policy design.


Efficient nonmyopic active search with applications in drug and materials discovery

arXiv.org Machine Learning

Active search is a learning paradigm for actively identifying as many members of a given class as possible. A critical target scenario is high-throughput screening for scientific discovery, such as drug or materials discovery. In this paper, we approach this problem in Bayesian decision framework. We first derive the Bayesian optimal policy under a natural utility, and establish a theoretical hardness of active search, proving that the optimal policy can not be approximated for any constant ratio. We also study the batch setting for the first time, where a batch of $b>1$ points can be queried at each iteration. We give an asymptotic lower bound, linear in batch size, on the adaptivity gap: how much we could lose if we query $b$ points at a time for $t$ iterations, instead of one point at a time for $bt$ iterations. We then introduce a novel approach to nonmyopic approximations of the optimal policy that admits efficient computation. Our proposed policy can automatically trade off exploration and exploitation, without relying on any tuning parameters. We also generalize our policy to batch setting, and propose two approaches to tackle the combinatorial search challenge. We evaluate our proposed policies on a large database of drug discovery and materials science. Results demonstrate the superior performance of our proposed policy in both sequential and batch setting; the nonmyopic behavior is also illustrated in various aspects.


Bayesian optimization for automated model selection

Neural Information Processing Systems

Despite the success of kernel-based nonparametric methods, kernel selection still requires considerable expertise, and is often described as a "black art." We present a sophisticated method for automatically searching for an appropriate kernel from an infinite space of potential choices. Previous efforts in this direction have focused on traversing a kernel grammar, only examining the data via computation of marginal likelihood. Our proposed search method is based on Bayesian optimization in model space, where we reason about model evidence as a function to be maximized. We explicitly reason about the data distribution and how it induces similarity between potential model choices in terms of the explanations they can offer for observed data. In this light, we construct a novel kernel between models to explain a given dataset. Our method is capable of finding a model that explains a given dataset well without any human assistance, often with fewer computations of model evidence than previous approaches, a claim we demonstrate empirically.


Fast Distributed k-Center Clustering with Outliers on Massive Data

Neural Information Processing Systems

Clustering large data is a fundamental problem with a vast number of applications. Due to the increasing size of data, practitioners interested in clustering have turned to distributed computation methods. In this work, we consider the widely used k-center clustering problem and its variant used to handle noisy data, k-center with outliers. In the noise-free setting we demonstrate how a previously-proposed distributed method is actually an O(1)-approximation algorithm, which accurately explains its strong empirical performance. Additionally, in the noisy setting, we develop a novel distributed algorithm that is also an O(1)-approximation. These algorithms are highly parallel and lend themselves to virtually any distributed computing framework. We compare both empirically against the best known noisy sequential clustering methods and show that both distributed algorithms are consistently close to their sequential versions. The algorithms are all one can hope for in distributed settings: they are fast, memory efficient and they match their sequential counterparts.


Bayesian Active Model Selection with an Application to Automated Audiometry

Neural Information Processing Systems

We introduce a novel information-theoretic approach for active model selection and demonstrate its effectiveness in a real-world application. Although our method can work with arbitrary models, we focus on actively learning the appropriate structure for Gaussian process (GP) models with arbitrary observation likelihoods. We then apply this framework to rapid screening for noise-induced hearing loss (NIHL), a widespread and preventible disability, if diagnosed early. We construct a GP model for pure-tone audiometric responses of patients with NIHL. Using this and a previously published model for healthy responses, the proposed method is shown to be capable of diagnosing the presence or absence of NIHL with drastically fewer samples than existing approaches. Further, the method is extremely fast and enables the diagnosis to be performed in real time.