Malik, Osman Asif
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Cheng, Nuojin, Malik, Osman Asif, De, Subhayan, Becker, Stephen, Doostan, Alireza
Quantifying the uncertainty of quantities of interest (QoIs) from physical systems is a primary objective in model validation. However, achieving this goal entails balancing the need for computational efficiency with the requirement for numerical accuracy. To address this trade-off, we propose a novel bi-fidelity formulation of variational auto-encoders (BF-VAE) designed to estimate the uncertainty associated with a QoI from low-fidelity (LF) and high-fidelity (HF) samples of the QoI. This model allows for the approximation of the statistics of the HF QoI by leveraging information derived from its LF counterpart. Specifically, we design a bi-fidelity auto-regressive model in the latent space that is integrated within the VAE's probabilistic encoder-decoder structure. An effective algorithm is proposed to maximize the variational lower bound of the HF log-likelihood in the presence of limited HF data, resulting in the synthesis of HF realizations with a reduced computational cost. Additionally, we introduce the concept of the bi-fidelity information bottleneck (BF-IB) to provide an information-theoretic interpretation of the proposed BF-VAE model. Our numerical results demonstrate that BF-VAE leads to considerably improved accuracy, as compared to a VAE trained using only HF data, when limited HF data is available.
Tensor Graph Convolutional Networks for Prediction on Dynamic Graphs
Malik, Osman Asif, Ubaru, Shashanka, Horesh, Lior, Kilmer, Misha E., Avron, Haim
Many irregular domains such as social networks, financial transactions, neuron connections, and natural language structures are represented as graphs. In recent years, a variety of graph neural networks (GNNs) have been successfully applied for representation learning and prediction on such graphs. However, in many of the applications, the underlying graph changes over time and existing GNNs are inadequate for handling such dynamic graphs. In this paper we propose a novel technique for learning embeddings of dynamic graphs based on a tensor algebra framework. Our method extends the popular graph convolutional network (GCN) for learning representations of dynamic graphs using the recently proposed tensor M-product technique. Theoretical results that establish the connection between the proposed tensor approach and spectral convolution of tensors are developed. Numerical experiments on real datasets demonstrate the usefulness of the proposed method for an edge classification task on dynamic graphs.
Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch
Malik, Osman Asif, Becker, Stephen
We propose two randomized algorithms for low-rank Tucker decomposition of tensors. The algorithms, which incorporate sketching, only require a single pass of the input tensor and can handle tensors whose elements are streamed in any order. To the best of our knowledge, ours are the only algorithms which can do this. We test our algorithms on sparse synthetic data and compare them to multiple other methods. We also apply one of our algorithms to a real dense 38 GB tensor representing a video and use the resulting decomposition to correctly classify frames containing disturbances.
Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch
Malik, Osman Asif, Becker, Stephen
We propose two randomized algorithms for low-rank Tucker decomposition of tensors. The algorithms, which incorporate sketching, only require a single pass of the input tensor and can handle tensors whose elements are streamed in any order. To the best of our knowledge, ours are the only algorithms which can do this. We test our algorithms on sparse synthetic data and compare them to multiple other methods. We also apply one of our algorithms to a real dense 38 GB tensor representing a video and use the resulting decomposition to correctly classify frames containing disturbances.