Goto

Collaborating Authors

 Malcorra, Bárbara


"Once Upon a Time..." Literary Narrative Connectedness Progresses with Grade Level: Potential Impact on Reading Fluency and Literacy Skills

arXiv.org Artificial Intelligence

Selecting an appropriate book is crucial for fostering reading habits in children. While children exhibit varying levels of complexity when generating oral narratives, the question arises: do children's books also differ in narrative complexity? This study explores the narrative dynamics of literary texts used in schools, focusing on how their complexity evolves across different grade levels. Using Word-Recurrence Graph Analysis, we examined a dataset of 1,627 literary texts spanning 13 years of education. The findings reveal significant exponential growth in connectedness, particularly during the first three years of schooling, mirroring patterns observed in children's oral narratives. These results highlight the potential of literary texts as a tool to support the development of literacy skills.


A Methodology for Explainable Large Language Models with Integrated Gradients and Linguistic Analysis in Text Classification

arXiv.org Artificial Intelligence

Neurological disorders that affect speech production, such as Alzheimer's Disease (AD), significantly impact the lives of both patients and caregivers, whether through social, psycho-emotional effects or other aspects not yet fully understood. Recent advancements in Large Language Model (LLM) architectures have developed many tools to identify representative features of neurological disorders through spontaneous speech. However, LLMs typically lack interpretability, meaning they do not provide clear and specific reasons for their decisions. Therefore, there is a need for methods capable of identifying the representative features of neurological disorders in speech and explaining clearly why these features are relevant. This paper presents an explainable LLM method, named SLIME (Statistical and Linguistic Insights for Model Explanation), capable of identifying lexical components representative of AD and indicating which components are most important for the LLM's decision. In developing this method, we used an English-language dataset consisting of transcriptions from the Cookie Theft picture description task. The LLM Bidirectional Encoder Representations from Transformers (BERT) classified the textual descriptions as either AD or control groups. To identify representative lexical features and determine which are most relevant to the model's decision, we used a pipeline involving Integrated Gradients (IG), Linguistic Inquiry and Word Count (LIWC), and statistical analysis. Our method demonstrates that BERT leverages lexical components that reflect a reduction in social references in AD and identifies which further improve the LLM's accuracy. Thus, we provide an explainability tool that enhances confidence in applying LLMs to neurological clinical contexts, particularly in the study of neurodegeneration.