Goto

Collaborating Authors

 Makeig, Scott


Automatic EEG Independent Component Classification Using ICLabel in Python

arXiv.org Artificial Intelligence

ICLabel is an important plug-in function in EEGLAB, the most widely used software for EEG data processing. A powerful approach to automated processing of EEG data involves decomposing the data by Independent Component Analysis (ICA) and then classifying the resulting independent components (ICs) using ICLabel. While EEGLAB pipelines support high-performance computing (HPC) platforms running the open-source Octave interpreter, the ICLabel plug-in is incompatible with Octave because of its specialized neural network architecture. To enhance cross-platform compatibility, we developed a Python version of ICLabel that uses standard EEGLAB data structures. We compared ICLabel MATLAB and Python implementations to data from 14 subjects. ICLabel returns the likelihood of classification in 7 classes of components for each ICA component. The returned IC classifications were virtually identical between Python and MATLAB, with differences in classification percentage below 0.001%.


ICLabel: An automated electroencephalographic independent component classifier, dataset, and website

arXiv.org Machine Learning

The electroencephalogram (EEG) provides a non-invasive, minimally restrictive, and relatively low cost measure of mesoscale brain dynamics with high temporal resolution. Although signals recorded in parallel by multiple, near-adjacent EEG scalp electrode channels are highly-correlated and combine signals from many different sources, biological and non-biological, independent component analysis (ICA) has been shown to isolate the various source generator processes underlying those recordings. Independent components (IC) found by ICA decomposition can be manually inspected, selected, and interpreted, but doing so requires both time and practice as ICs have no particular order or intrinsic interpretations and therefore require further study of their properties. Alternatively, sufficiently-accurate automated IC classifiers can be used to classify ICs into broad source categories, speeding the analysis of EEG studies with many subjects and enabling the use of ICA decomposition in near-real-time applications. While many such classifiers have been proposed recently, this work presents the ICLabel project comprised of (1) an IC dataset containing spatiotemporal measures for over 200,000 ICs from more than 6,000 EEG recordings, (2) a website for collecting crowdsourced IC labels and educating EEG researchers and practitioners about IC interpretation, and (3) the automated ICLabel classifier. The classifier improves upon existing methods in two ways: by improving the accuracy of the computed label estimates and by enhancing its computational efficiency. The ICLabel classifier outperforms or performs comparably to the previous best publicly available method for all measured IC categories while computing those labels ten times faster than that classifier as shown in a rigorous comparison against all other publicly available EEG IC classifiers.


Spatiotemporal Sparse Bayesian Learning with Applications to Compressed Sensing of Multichannel Physiological Signals

arXiv.org Machine Learning

Energy consumption is an important issue in continuous wireless telemonitoring of physiological signals. Compressed sensing (CS) is a promising framework to address it, due to its energy-efficient data compression procedure. However, most CS algorithms have difficulty in data recovery due to non-sparsity characteristic of many physiological signals. Block sparse Bayesian learning (BSBL) is an effective approach to recover such signals with satisfactory recovery quality. However, it is time-consuming in recovering multichannel signals, since its computational load almost linearly increases with the number of channels. This work proposes a spatiotemporal sparse Bayesian learning algorithm to recover multichannel signals simultaneously. It not only exploits temporal correlation within each channel signal, but also exploits inter-channel correlation among different channel signals. Furthermore, its computational load is not significantly affected by the number of channels. The proposed algorithm was applied to brain computer interface (BCI) and EEG-based driver's drowsiness estimation. Results showed that the algorithm had both better recovery performance and much higher speed than BSBL. Particularly, the proposed algorithm ensured that the BCI classification and the drowsiness estimation had little degradation even when data were compressed by 80%, making it very suitable for continuous wireless telemonitoring of multichannel signals.


Compressed Sensing of EEG for Wireless Telemonitoring with Low Energy Consumption and Inexpensive Hardware

arXiv.org Machine Learning

Telemonitoring of electroencephalogram (EEG) through wireless body-area networks is an evolving direction in personalized medicine. Among various constraints in designing such a system, three important constraints are energy consumption, data compression, and device cost. Conventional data compression methodologies, although effective in data compression, consumes significant energy and cannot reduce device cost. Compressed sensing (CS), as an emerging data compression methodology, is promising in catering to these constraints. However, EEG is non-sparse in the time domain and also non-sparse in transformed domains (such as the wavelet domain). Therefore, it is extremely difficult for current CS algorithms to recover EEG with the quality that satisfies the requirements of clinical diagnosis and engineering applications. Recently, Block Sparse Bayesian Learning (BSBL) was proposed as a new method to the CS problem. This study introduces the technique to the telemonitoring of EEG. Experimental results show that its recovery quality is better than state-of-the-art CS algorithms, and sufficient for practical use. These results suggest that BSBL is very promising for telemonitoring of EEG and other non-sparse physiological signals.


Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG via Block Sparse Bayesian Learning

arXiv.org Machine Learning

Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body-area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as non-sparsity and strong noise contamination, current CS algorithms generally fail in this application. This work proposes to use the block sparse Bayesian learning (BSBL) framework to compress/reconstruct non-sparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage.


Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization

Neural Information Processing Systems

The ill-posed nature of the MEG/EEG source localization problem requires the incorporation of prior assumptions when choosing an appropriate solution out of an infinite set of candidates. Bayesian methods are useful in this capacity because they allow these assumptions to be explicitly quantified. Recently, a number of empirical Bayesian approaches have been proposed that attempt a form of model selection by using the data to guide the search for an appropriate prior. While seemingly quite different in many respects, we apply a unifying framework based on automatic relevance determination (ARD) that elucidates various attributes of these methods and suggests directions for improvement. We also derive theoretical propertiesof this methodology related to convergence, local minima, and localization bias and explore connections with established algorithms.


Analyzing and Visualizing Single-Trial Event-Related Potentials

Neural Information Processing Systems

Event-related potentials (ERPs), are portions of electroencephalographic (EEG)recordings that are both time-and phase-locked to experimental events. ERPs are usually averaged to increase their signal/noise ratio relative to non-phase locked EEG activity, regardlessof the fact that response activity in single epochs may vary widely in time course and scalp distribution. This study applies a linear decomposition tool, Independent Component Analysis (ICA)[1], to multichannel single-trial EEG records to derive spatial filters that decompose single-trial EEG epochs into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain networks. Our results on normal and autistic subjects show that ICA can separate artifactual,stimulus-locked, response-locked, and.


Analyzing and Visualizing Single-Trial Event-Related Potentials

Neural Information Processing Systems

Event-related potentials (ERPs), are portions of electroencephalographic (EEG) recordings that are both time-and phase-locked to experimental events. ERPs are usually averaged to increase their signal/noise ratio relative to non-phase locked EEG activity, regardless of the fact that response activity in single epochs may vary widely in time course and scalp distribution. This study applies a linear decomposition tool, Independent Component Analysis (ICA) [1], to multichannel single-trial EEG records to derive spatial filters that decompose single-trial EEG epochs into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain networks. Our results on normal and autistic subjects show that ICA can separate artifactual, stimulus-locked, response-locked, and.



Extended ICA Removes Artifacts from Electroencephalographic Recordings

Neural Information Processing Systems

Severe contamination of electroencephalographic (EEG) activity by eye movements, blinks, muscle, heart and line noise is a serious problem for EEG interpretation and analysis. Rejecting contaminated EEG segments results in a considerable loss of information and may be impractical for clinical data. Many methods have been proposed to remove eye movement and blink artifacts from EEG recordings. Often regression in the time or frequency domain is performed on simultaneous EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. However, EOG records also contain brain signals [1, 2], so regressing out EOG activity inevitably involves subtracting a portion of the relevant EEG signal from each recording as well. Regression cannot be used to remove muscle noise or line noise, since these have no reference channels. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records. The method is based on an extended version of a previous Independent Component Analysis (lCA) algorithm [3, 4] for performing blind source separation on linear mixtures of independent source signals with either sub-Gaussian or super-Gaussian distributions. Our results show that ICA can effectively detect, separate and remove activity in EEG records from a wide variety of artifactual sources, with results comparing favorably to those obtained using regression-based methods.