Makarov, Ilya
Building Machine Learning Challenges for Anomaly Detection in Science
Campolongo, Elizabeth G., Chou, Yuan-Tang, Govorkova, Ekaterina, Bhimji, Wahid, Chao, Wei-Lun, Harris, Chris, Hsu, Shih-Chieh, Lapp, Hilmar, Neubauer, Mark S., Namayanja, Josephine, Subramanian, Aneesh, Harris, Philip, Anand, Advaith, Carlyn, David E., Ghosh, Subhankar, Lawrence, Christopher, Moreno, Eric, Raikman, Ryan, Wu, Jiaman, Zhang, Ziheng, Adhi, Bayu, Gharehtoragh, Mohammad Ahmadi, Monsalve, Saúl Alonso, Babicz, Marta, Baig, Furqan, Banerji, Namrata, Bardon, William, Barna, Tyler, Berger-Wolf, Tanya, Dieng, Adji Bousso, Brachman, Micah, Buat, Quentin, Hui, David C. Y., Cao, Phuong, Cerino, Franco, Chang, Yi-Chun, Chaulagain, Shivaji, Chen, An-Kai, Chen, Deming, Chen, Eric, Chou, Chia-Jui, Ciou, Zih-Chen, Cochran-Branson, Miles, Choi, Artur Cordeiro Oudot, Coughlin, Michael, Cremonesi, Matteo, Dadarlat, Maria, Darch, Peter, Desai, Malina, Diaz, Daniel, Dillmann, Steven, Duarte, Javier, Duporge, Isla, Ekka, Urbas, Heravi, Saba Entezari, Fang, Hao, Flynn, Rian, Fox, Geoffrey, Freed, Emily, Gao, Hang, Gao, Jing, Gonski, Julia, Graham, Matthew, Hashemi, Abolfazl, Hauck, Scott, Hazelden, James, Peterson, Joshua Henry, Hoang, Duc, Hu, Wei, Huennefeld, Mirco, Hyde, David, Janeja, Vandana, Jaroenchai, Nattapon, Jia, Haoyi, Kang, Yunfan, Kholiavchenko, Maksim, Khoda, Elham E., Kim, Sangin, Kumar, Aditya, Lai, Bo-Cheng, Le, Trung, Lee, Chi-Wei, Lee, JangHyeon, Lee, Shaocheng, van der Lee, Suzan, Lewis, Charles, Li, Haitong, Li, Haoyang, Liao, Henry, Liu, Mia, Liu, Xiaolin, Liu, Xiulong, Loncar, Vladimir, Lyu, Fangzheng, Makarov, Ilya, Mao, Abhishikth Mallampalli Chen-Yu, Michels, Alexander, Migala, Alexander, Mokhtar, Farouk, Morlighem, Mathieu, Namgung, Min, Novak, Andrzej, Novick, Andrew, Orsborn, Amy, Padmanabhan, Anand, Pan, Jia-Cheng, Pandya, Sneh, Pei, Zhiyuan, Peixoto, Ana, Percivall, George, Leung, Alex Po, Purushotham, Sanjay, Que, Zhiqiang, Quinnan, Melissa, Ranjan, Arghya, Rankin, Dylan, Reissel, Christina, Riedel, Benedikt, Rubenstein, Dan, Sasli, Argyro, Shlizerman, Eli, Singh, Arushi, Singh, Kim, Sokol, Eric R., Sorensen, Arturo, Su, Yu, Taheri, Mitra, Thakkar, Vaibhav, Thomas, Ann Mariam, Toberer, Eric, Tsai, Chenghan, Vandewalle, Rebecca, Verma, Arjun, Venterea, Ricco C., Wang, He, Wang, Jianwu, Wang, Sam, Wang, Shaowen, Watts, Gordon, Weitz, Jason, Wildridge, Andrew, Williams, Rebecca, Wolf, Scott, Xu, Yue, Yan, Jianqi, Yu, Jai, Zhang, Yulei, Zhao, Haoran, Zhao, Ying, Zhong, Yibo
Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
LLM-KT: A Versatile Framework for Knowledge Transfer from Large Language Models to Collaborative Filtering
Severin, Nikita, Ziablitsev, Aleksei, Savelyeva, Yulia, Tashchilin, Valeriy, Bulychev, Ivan, Yushkov, Mikhail, Kushneruk, Artem, Zaryvnykh, Amaliya, Kiselev, Dmitrii, Savchenko, Andrey, Makarov, Ilya
We present LLM-KT, a flexible framework designed to enhance collaborative filtering (CF) models by seamlessly integrating LLM (Large Language Model)-generated features. Unlike existing methods that rely on passing LLM-generated features as direct inputs, our framework injects these features into an intermediate layer of any CF model, allowing the model to reconstruct and leverage the embeddings internally. This model-agnostic approach works with a wide range of CF models without requiring architectural changes, making it adaptable to various recommendation scenarios. Our framework is built for easy integration and modification, providing researchers and developers with a powerful tool for extending CF model capabilities through efficient knowledge transfer. We demonstrate its effectiveness through experiments on the MovieLens and Amazon datasets, where it consistently improves baseline CF models. Experimental studies showed that LLM-KT is competitive with the state-of-the-art methods in context-aware settings but can be applied to a broader range of CF models than current approaches.
Aligning Diffusion Models with Noise-Conditioned Perception
Gambashidze, Alexander, Kulikov, Anton, Sosnin, Yuriy, Makarov, Ilya
Recent advancements in human preference optimization, initially developed for Language Models (LMs), have shown promise for text-to-image Diffusion Models, enhancing prompt alignment, visual appeal, and user preference. Unlike LMs, Diffusion Models typically optimize in pixel or VAE space, which does not align well with human perception, leading to slower and less efficient training during the preference alignment stage. We propose using a perceptual objective in the U-Net embedding space of the diffusion model to address these issues. Our approach involves fine-tuning Stable Diffusion 1.5 and XL using Direct Preference Optimization (DPO), Contrastive Preference Optimization (CPO), and supervised fine-tuning (SFT) within this embedding space. This method significantly outperforms standard latent-space implementations across various metrics, including quality and computational cost. For SDXL, our approach provides 60.8\% general preference, 62.2\% visual appeal, and 52.1\% prompt following against original open-sourced SDXL-DPO on the PartiPrompts dataset, while significantly reducing compute. Our approach not only improves the efficiency and quality of human preference alignment for diffusion models but is also easily integrable with other optimization techniques. The training code and LoRA weights will be available here: https://huggingface.co/alexgambashidze/SDXL\_NCP-DPO\_v0.1
Adversarial Attacks and Defenses in Fault Detection and Diagnosis: A Comprehensive Benchmark on the Tennessee Eastman Process
Pozdnyakov, Vitaliy, Kovalenko, Aleksandr, Makarov, Ilya, Drobyshevskiy, Mikhail, Lukyanov, Kirill
Integrating machine learning into Automated Control Systems (ACS) enhances decision-making in industrial process management. One of the limitations to the widespread adoption of these technologies in industry is the vulnerability of neural networks to adversarial attacks. This study explores the threats in deploying deep learning models for fault diagnosis in ACS using the Tennessee Eastman Process dataset. By evaluating three neural networks with different architectures, we subject them to six types of adversarial attacks and explore five different defense methods. Our results highlight the strong vulnerability of models to adversarial samples and the varying effectiveness of defense strategies. We also propose a novel protection approach by combining multiple defense methods and demonstrate it's efficacy. This research contributes several insights into securing machine learning within ACS, ensuring robust fault diagnosis in industrial processes.
The Good, the Bad, and the Hulk-like GPT: Analyzing Emotional Decisions of Large Language Models in Cooperation and Bargaining Games
Mozikov, Mikhail, Severin, Nikita, Bodishtianu, Valeria, Glushanina, Maria, Baklashkin, Mikhail, Savchenko, Andrey V., Makarov, Ilya
Behavior study experiments are an important part of society modeling and understanding human interactions. In practice, many behavioral experiments encounter challenges related to internal and external validity, reproducibility, and social bias due to the complexity of social interactions and cooperation in human user studies. Recent advances in Large Language Models (LLMs) have provided researchers with a new promising tool for the simulation of human behavior. However, existing LLM-based simulations operate under the unproven hypothesis that LLM agents behave similarly to humans as well as ignore a crucial factor in human decision-making: emotions. In this paper, we introduce a novel methodology and the framework to study both, the decision-making of LLMs and their alignment with human behavior under emotional states. Experiments with GPT-3.5 and GPT-4 on four games from two different classes of behavioral game theory showed that emotions profoundly impact the performance of LLMs, leading to the development of more optimal strategies. While there is a strong alignment between the behavioral responses of GPT-3.5 and human participants, particularly evident in bargaining games, GPT-4 exhibits consistent behavior, ignoring induced emotions for rationality decisions. Surprisingly, emotional prompting, particularly with `anger' emotion, can disrupt the "superhuman" alignment of GPT-4, resembling human emotional responses.
A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-By-Humming Task
Amatov, Amantur, Lamanov, Dmitry, Titov, Maksim, Vovk, Ivan, Makarov, Ilya, Kudinov, Mikhail
Query-by-Humming (QbH) is a task that involves finding the most relevant song based on a hummed or sung fragment. Despite recent successful commercial solutions, implementing QbH systems remains challenging due to the lack of high-quality datasets for training machine learning models. In this paper, we propose a deep learning data collection technique and introduce Covers and Hummings Aligned Dataset (CHAD), a novel dataset that contains 18 hours of short music fragments, paired with time-aligned hummed versions. To expand our dataset, we employ a semi-supervised model training pipeline that leverages the QbH task as a specialized case of cover song identification (CSI) task. Starting with a model trained on the initial dataset, we iteratively collect groups of fragments of cover versions of the same song and retrain the model on the extended data. Using this pipeline, we collect over 308 hours of additional music fragments, paired with time-aligned cover versions. The final model is successfully applied to the QbH task and achieves competitive results on benchmark datasets. Our study shows that the proposed dataset and training pipeline can effectively facilitate the implementation of QbH systems.
Refining the ONCE Benchmark with Hyperparameter Tuning
Golyadkin, Maksim, Gambashidze, Alexander, Nurgaliev, Ildar, Makarov, Ilya
In response to the growing demand for 3D object detection in applications such as autonomous driving, robotics, and augmented reality, this work focuses on the evaluation of semi-supervised learning approaches for point cloud data. The point cloud representation provides reliable and consistent observations regardless of lighting conditions, thanks to advances in LiDAR sensors. Data annotation is of paramount importance in the context of LiDAR applications, and automating 3D data annotation with semi-supervised methods is a pivotal challenge that promises to reduce the associated workload and facilitate the emergence of cost-effective LiDAR solutions. Nevertheless, the task of semi-supervised learning in the context of unordered point cloud data remains formidable due to the inherent sparsity and incomplete shapes that hinder the generation of accurate pseudo-labels. In this study, we consider these challenges by posing the question: "To what extent does unlabelled data contribute to the enhancement of model performance?" We show that improvements from previous semi-supervised methods may not be as profound as previously thought. Our results suggest that simple grid search hyperparameter tuning applied to a supervised model can lead to state-of-the-art performance on the ONCE dataset, while the contribution of unlabelled data appears to be comparatively less exceptional.
SensorSCAN: Self-Supervised Learning and Deep Clustering for Fault Diagnosis in Chemical Processes
Golyadkin, Maksim, Pozdnyakov, Vitaliy, Zhukov, Leonid, Makarov, Ilya
Modern industrial facilities generate large volumes of raw sensor data during the production process. This data is used to monitor and control the processes and can be analyzed to detect and predict process abnormalities. Typically, the data has to be annotated by experts in order to be used in predictive modeling. However, manual annotation of large amounts of data can be difficult in industrial settings. In this paper, we propose SensorSCAN, a novel method for unsupervised fault detection and diagnosis, designed for industrial chemical process monitoring. We demonstrate our model's performance on two publicly available datasets of the Tennessee Eastman Process with various faults. The results show that our method significantly outperforms existing approaches (+0.2-0.3 TPR for a fixed FPR) and effectively detects most of the process faults without expert annotation. Moreover, we show that the model fine-tuned on a small fraction of labeled data nearly reaches the performance of a SOTA model trained on the full dataset. We also demonstrate that our method is suitable for real-world applications where the number of faults is not known in advance. The code is available at https://github.com/AIRI-Institute/sensorscan.
Dealing with Sparse Rewards Using Graph Neural Networks
Gerasyov, Matvey, Makarov, Ilya
Reinforcement learning is a machine learning paradigm where an artificial agent learns the optimal behavior through interactions with a dynamic environment. Goals and purposes are explained to the agent via a scalar reward signal it receives after each interaction. Throughout the training process, the agent infers the behavior that maximizes cumulative reward, also called the return. To succeed in this task, the agent needs to explore the environment to understand which states and actions yield high rewards. On the other hand, the agent also has to exploit the rewards it has already received to adapt its behavior. This problem is known as the exploration and exploitation trade-off. This work was supported in part on Section 2 by the Strategic Project "Digital Business" within the framework of the Strategic Academic Leadership Program "Priority 2030" at the National University of Science and Technology (NUST) MISiS, in part by the Basic Research Program at the National Research University Higher School of Economics (HSE University), and in part by the Computational Resources of HPC Facilities at HSE University.
Interaction models for remaining useful life estimation
Zhevnenko, Dmitry, Kazantsev, Mikhail, Makarov, Ilya
The current methods rely on one approach to feature extraction in which the prediction occurs. We proposed a technique to build a scalable model that combines multiple different feature extractor blocks. A new model based on sequential sensor space analysis achieves state-of-the-art results on the C-MAPSS benchmark for equipment remaining useful life estimation. The resulting model performance was validated including the prediction changes with scaling.