Goto

Collaborating Authors

 Majumder, Navonil


TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization

arXiv.org Artificial Intelligence

A key challenge in aligning TTA models lies in the difficulty of creating preference pairs, as TTA lacks structured mechanisms like verifiable rewards or gold-standard answers available for Large Language Models (LLMs). We demonstrate that the audio preference dataset generated using CRPO outperforms existing alternatives. We open source all code and models to support further research in TTA generation. Audio plays a vital role in daily life and creative industries, from enhancing communication and storytelling to enriching experiences in music, sound effects, and podcasts. Recent advancements in text-to-audio (TTA) generation (Majumder et al., 2024; Ghosal et al., 2023; Liu et al., 2023; 2024b; Xue et al., 2024; Vyas et al., 2023; Huang et al., 2023b;a) and offer a transformative approach, enabling the automatic creation of diverse and expressive audio content directly from textual descriptions. This technology holds immense potential to streamline audio production workflows and unlock new possibilities in multimedia content creation. However, many existing models face challenges with controllability, occasionally struggling to fully capture the details in the input prompts, especially when the prompts are complex. This can sometimes result in generated audio that omits certain events or diverges from the user intent. At times, the generated audio may even contain input-adjacent, but unmentioned and unintended, events, that could be characterized as hallucinations. In contrast, the recent advancements in Large Language Models (LLMs) (Ouyang et al., 2022) have been significantly driven by the alignment stage after pre-training and supervised fine-tuning. This alignment stage, often leveraging reinforcement learning from human feedback (RLHF) or other reward-based optimization methods, endows the generated outputs with human preferences, ethical considerations, and task-specific requirements (Ouyang et al., 2022).


Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization

arXiv.org Artificial Intelligence

Generative multimodal content is increasingly prevalent in much of the content creation arena, as it has the potential to allow artists and media personnel to create pre-production mockups by quickly bringing their ideas to life. The generation of audio from text prompts is an important aspect of such processes in the music and film industry. Many of the recent diffusion-based text-to-audio models focus on training increasingly sophisticated diffusion models on a large set of datasets of prompt-audio pairs. These models do not explicitly focus on the presence of concepts or events and their temporal ordering in the output audio with respect to the input prompt. Our hypothesis is focusing on how these aspects of audio generation could improve audio generation performance in the presence of limited data. As such, in this work, using an existing text-to-audio model Tango, we synthetically create a preference dataset where each prompt has a winner audio output and some loser audio outputs for the diffusion model to learn from. The loser outputs, in theory, have some concepts from the prompt missing or in an incorrect order. We fine-tune the publicly available Tango text-to-audio model using diffusion-DPO (direct preference optimization) loss on our preference dataset and show that it leads to improved audio output over Tango and AudioLDM2, in terms of both automatic- and manual-evaluation metrics.


Reward Steering with Evolutionary Heuristics for Decoding-time Alignment

arXiv.org Artificial Intelligence

The widespread applicability and increasing omnipresence of LLMs have instigated a need to align LLM responses to user and stakeholder preferences. Many preference optimization approaches have been proposed that fine-tune LLM parameters to achieve good alignment. However, such parameter tuning is known to interfere with model performance on many tasks. Moreover, keeping up with shifting user preferences is tricky in such a situation. Decoding-time alignment with reward model guidance solves these issues at the cost of increased inference time. However, most of such methods fail to strike the right balance between exploration and exploitation of reward -- often due to the conflated formulation of these two aspects - to give well-aligned responses. To remedy this we decouple these two aspects and implement them in an evolutionary fashion: exploration is enforced by decoding from mutated instructions and exploitation is represented as the periodic replacement of poorly-rewarded generations with well-rewarded ones. Empirical evidences indicate that this strategy outperforms many preference optimization and decode-time alignment approaches on two widely accepted alignment benchmarks AlpacaEval 2 and MT-Bench. Our implementation will be available at: https://darwin-alignment.github.io.


Improving Text-To-Audio Models with Synthetic Captions

arXiv.org Artificial Intelligence

It is an open challenge to obtain high quality training data, especially captions, for text-to-audio models. Although prior methods have leveraged \textit{text-only language models} to augment and improve captions, such methods have limitations related to scale and coherence between audio and captions. In this work, we propose an audio captioning pipeline that uses an \textit{audio language model} to synthesize accurate and diverse captions for audio at scale. We leverage this pipeline to produce a dataset of synthetic captions for AudioSet, named \texttt{AF-AudioSet}, and then evaluate the benefit of pre-training text-to-audio models on these synthetic captions. Through systematic evaluations on AudioCaps and MusicCaps, we find leveraging our pipeline and synthetic captions leads to significant improvements on audio generation quality, achieving a new \textit{state-of-the-art}.


Stuck in the Quicksand of Numeracy, Far from AGI Summit: Evaluating LLMs' Mathematical Competency through Ontology-guided Perturbations

arXiv.org Artificial Intelligence

Recent advancements in Large Language Models (LLMs) have showcased striking results on existing logical reasoning benchmarks, with some models even surpassing human performance. However, the true depth of their competencies and robustness, in mathematical reasoning tasks, remains an open question. In response, we develop (i) an ontology of perturbations of maths questions, (ii) a semi-automatic method of perturbation, and (iii) a dataset of perturbed maths questions to probe the limits of LLM capabilities in mathematical reasoning tasks. These controlled perturbations span across multiple fine dimensions of the structural and representational aspects of maths questions. Using GPT-4, we generated the MORE dataset by perturbing randomly selected five seed questions from GSM8K. This process was guided by our ontology and involved a thorough automatic and manual filtering process, yielding a set of 216 maths problems. We conducted comprehensive evaluation of both closed-source and open-source LLMs on MORE. The results show a significant performance drop across all the models against the perturbed questions. This strongly suggests that current LLMs lack robust mathematical skills and deep reasoning abilities. This research not only identifies multiple gaps in the capabilities of current models, but also highlights multiple potential directions for future development. Our dataset will be made publicly available at https://huggingface.co/datasets/declare-lab/GSM8k_MORE.


Language Guided Visual Question Answering: Elevate Your Multimodal Language Model Using Knowledge-Enriched Prompts

arXiv.org Artificial Intelligence

Visual question answering (VQA) is the task of answering questions about an image. The task assumes an understanding of both the image and the question to provide a natural language answer. VQA has gained popularity in recent years due to its potential applications in a wide range of fields, including robotics, education, and healthcare. In this paper, we focus on knowledge-augmented VQA, where answering the question requires commonsense knowledge, world knowledge, and reasoning about ideas and concepts not present in the image. We propose a multimodal framework that uses language guidance (LG) in the form of rationales, image captions, scene graphs, etc to answer questions more accurately. We benchmark our method on the multi-choice question-answering task of the A-OKVQA, Science-QA, VSR, and IconQA datasets using CLIP and BLIP models. We show that the use of language guidance is a simple but powerful and effective strategy for visual question answering. Our language guidance improves the performance of CLIP by 7.6% and BLIP-2 by 4.8% in the challenging A-OKVQA dataset. We also observe consistent improvement in performance on the Science-QA, VSR, and IconQA datasets when using the proposed language guidances. The implementation of LG-VQA is publicly available at https:// github.com/declare-lab/LG-VQA.


Flacuna: Unleashing the Problem Solving Power of Vicuna using FLAN Fine-Tuning

arXiv.org Artificial Intelligence

Recently, the release of INSTRUCTEVAL has provided valuable insights into the performance of large language models (LLMs) that utilize encoder-decoder or decoder-only architecture. Interestingly, despite being introduced four years ago, T5-based LLMs, such as FLAN-T5, continue to outperform the latest decoder-based LLMs, such as LLAMA and VICUNA, on tasks that require general problem-solving skills. This performance discrepancy can be attributed to three key factors: (1) Pre-training data, (2) Backbone architecture, and (3) Instruction dataset. In this technical report, our main focus is on investigating the impact of the third factor by leveraging VICUNA, a large language model based on LLAMA, which has undergone fine-tuning on ChatGPT conversations. To achieve this objective, we fine-tuned VICUNA using a customized instruction dataset collection called FLANMINI. This collection includes a subset of the large-scale instruction dataset known as FLAN, as well as various code-related datasets and conversational datasets derived from ChatGPT/GPT-4. This dataset comprises a large number of tasks that demand problem-solving skills. Our experimental findings strongly indicate that the enhanced problem-solving abilities of our model, FLACUNA, are obtained through fine-tuning VICUNA on the FLAN dataset, leading to significant improvements across numerous benchmark datasets in INSTRUCTEVAL. FLACUNA is publicly available at https://huggingface.co/declare-lab/flacuna-13b-v1.0.


ADAPTERMIX: Exploring the Efficacy of Mixture of Adapters for Low-Resource TTS Adaptation

arXiv.org Artificial Intelligence

There are significant challenges for speaker adaptation in text-to-speech for languages that are not widely spoken or for speakers with accents or dialects that are not well-represented in the training data. To address this issue, we propose the use of the "mixture of adapters" method. This approach involves adding multiple adapters within a backbone-model layer to learn the unique characteristics of different speakers. Our approach outperforms the baseline, with a noticeable improvement of 5% observed in speaker preference tests when using only one minute of data for each new speaker. Moreover, following the adapter paradigm, we fine-tune only the adapter parameters (11% of the total model parameters). This is a significant achievement in parameter-efficient speaker adaptation, and one of the first models of its kind. Overall, our proposed approach offers a promising solution to the speech synthesis techniques, particularly for adapting to speakers from diverse backgrounds.


Text-to-Audio Generation using Instruction-Tuned LLM and Latent Diffusion Model

arXiv.org Artificial Intelligence

The immense scale of the recent large language models (LLM) allows many interesting properties, such as, instruction- and chain-of-thought-based fine-tuning, that has significantly improved zero- and few-shot performance in many natural language processing (NLP) tasks. Inspired by such successes, we adopt such an instruction-tuned LLM Flan-T5 as the text encoder for text-to-audio (TTA) generation -- a task where the goal is to generate an audio from its textual description. The prior works on TTA either pre-trained a joint text-audio encoder or used a non-instruction-tuned model, such as, T5. Consequently, our latent diffusion model (LDM)-based approach TANGO outperforms the state-of-the-art AudioLDM on most metrics and stays comparable on the rest on AudioCaps test set, despite training the LDM on a 63 times smaller dataset and keeping the text encoder frozen. This improvement might also be attributed to the adoption of audio pressure level-based sound mixing for training set augmentation, whereas the prior methods take a random mix.


Sentence Embedder Guided Utterance Encoder (SEGUE) for Spoken Language Understanding

arXiv.org Artificial Intelligence

The pre-trained speech encoder wav2vec 2.0 performs very well on various spoken language understanding (SLU) tasks. However, on many tasks, it trails behind text encoders with textual input. To improve the understanding capability of SLU encoders, various studies have used knowledge distillation to transfer knowledge from natural language understanding (NLU) encoders. We use a very simple method of distilling from a textual sentence embedder directly into wav2vec 2.0 as pre-training, utilizing paired audio-text datasets. We observed that this method is indeed capable of improving SLU task performance in fine-tuned settings, as well as full-data and few-shot transfer on a frozen encoder. However, the model performs worse on certain tasks highlighting the strengths and weaknesses of our approach.