Majumdar, Rupak
Regret-Free Reinforcement Learning for LTL Specifications
Majumdar, Rupak, Salamati, Mahmoud, Soudjani, Sadegh
Reinforcement learning (RL) is a promising method to learn optimal control policies for systems with unknown dynamics. In particular, synthesizing controllers for safety-critical systems based on high-level specifications, such as those expressed in temporal languages like linear temporal logic (LTL), presents a significant challenge in control systems research. Current RL-based methods designed for LTL tasks typically offer only asymptotic guarantees, which provide no insight into the transient performance during the learning phase. While running an RL algorithm, it is crucial to assess how close we are to achieving optimal behavior if we stop learning. In this paper, we present the first regret-free online algorithm for learning a controller that addresses the general class of LTL specifications over Markov decision processes (MDPs) with a finite set of states and actions. We begin by proposing a regret-free learning algorithm to solve infinite-horizon reach-avoid problems. For general LTL specifications, we show that the synthesis problem can be reduced to a reach-avoid problem when the graph structure is known. Additionally, we provide an algorithm for learning the graph structure, assuming knowledge of a minimum transition probability, which operates independently of the main regret-free algorithm.
Optimal Integrated Task and Path Planning and Its Application to Multi-Robot Pickup and Delivery
Aryan, Aman, Modi, Manan, Saha, Indranil, Majumdar, Rupak, Mohalik, Swarup
We propose a generic multi-robot planning mechanism that combines an optimal task planner and an optimal path planner to provide a scalable solution for complex multi-robot planning problems. The Integrated planner, through the interaction of the task planner and the path planner, produces optimal collision-free trajectories for the robots. We illustrate our general algorithm on an object pick-and-drop planning problem in a warehouse scenario where a group of robots is entrusted with moving objects from one location to another in the workspace. We solve the task planning problem by reducing it into an SMT-solving problem and employing the highly advanced SMT solver Z3 to solve it. To generate collision-free movement of the robots, we extend the state-of-the-art algorithm Conflict Based Search with Precedence Constraints with several domain-specific constraints. We evaluate our integrated task and path planner extensively on various instances of the object pick-and-drop planning problem and compare its performance with a state-of-the-art multi-robot classical planner. Experimental results demonstrate that our planning mechanism can deal with complex planning problems and outperforms a state-of-the-art classical planner both in terms of computation time and the quality of the generated plan.
Sequential Principal-Agent Problems with Communication: Efficient Computation and Learning
Gan, Jiarui, Majumdar, Rupak, Mandal, Debmalya, Radanovic, Goran
We study a sequential decision making problem between a principal and an agent with incomplete information on both sides. In this model, the principal and the agent interact in a stochastic environment, and each is privy to observations about the state not available to the other. The principal has the power of commitment, both to elicit information from the agent and to provide signals about her own information. The principal and the agent communicate their signals to each other, and select their actions independently based on this communication. Each player receives a payoff based on the state and their joint actions, and the environment moves to a new state. The interaction continues over a finite time horizon, and both players act to optimize their own total payoffs over the horizon. Our model encompasses as special cases stochastic games of incomplete information and POMDPs, as well as sequential Bayesian persuasion and mechanism design problems. We study both computation of optimal policies and learning in our setting. While the general problems are computationally intractable, we study algorithmic solutions under a conditional independence assumption on the underlying state-observation distributions. We present a polynomial-time algorithm to compute the principal's optimal policy up to an additive approximation. Additionally, we show an efficient learning algorithm in the case where the transition probabilities are not known beforehand. The algorithm guarantees sublinear regret for both players.
Generative AI for Programming Education: Benchmarking ChatGPT, GPT-4, and Human Tutors
Phung, Tung, Pฤdurean, Victor-Alexandru, Cambronero, Josรฉ, Gulwani, Sumit, Kohn, Tobias, Majumdar, Rupak, Singla, Adish, Soares, Gustavo
Generative AI and large language models hold great promise in enhancing computing education by powering next-generation educational technologies for introductory programming. Recent works have studied these models for different scenarios relevant to programming education; however, these works are limited for several reasons, as they typically consider already outdated models or only specific scenario(s). Consequently, there is a lack of a systematic study that benchmarks state-of-the-art models for a comprehensive set of programming education scenarios. In our work, we systematically evaluate two models, ChatGPT (based on GPT-3.5) and GPT-4, and compare their performance with human tutors for a variety of scenarios. We evaluate using five introductory Python programming problems and real-world buggy programs from an online platform, and assess performance using expert-based annotations. Our results show that GPT-4 drastically outperforms ChatGPT (based on GPT-3.5) and comes close to human tutors' performance for several scenarios. These results also highlight settings where GPT-4 still struggles, providing exciting future directions on developing techniques to improve the performance of these models.
Markov Decision Processes with Time-Varying Geometric Discounting
Gan, Jiarui, Hennes, Annika, Majumdar, Rupak, Mandal, Debmalya, Radanovic, Goran
Canonical models of Markov decision processes (MDPs) usually consider geometric discounting based on a constant discount factor. While this standard modeling approach has led to many elegant results, some recent studies indicate the necessity of modeling time-varying discounting in certain applications. This paper studies a model of infinite-horizon MDPs with time-varying discount factors. We take a game-theoretic perspective -- whereby each time step is treated as an independent decision maker with their own (fixed) discount factor -- and we study the subgame perfect equilibrium (SPE) of the resulting game as well as the related algorithmic problems. We present a constructive proof of the existence of an SPE and demonstrate the EXPTIME-hardness of computing an SPE. We also turn to the approximate notion of $\epsilon$-SPE and show that an $\epsilon$-SPE exists under milder assumptions. An algorithm is presented to compute an $\epsilon$-SPE, of which an upper bound of the time complexity, as a function of the convergence property of the time-varying discount factor, is provided.
Neural Abstraction-Based Controller Synthesis and Deployment
Majumdar, Rupak, Salamati, Mahmoud, Soudjani, Sadegh
Abstraction-based techniques are an attractive approach for synthesizing correct-by-construction controllers to satisfy high-level temporal requirements. A main bottleneck for successful application of these techniques is the memory requirement, both during controller synthesis and in controller deployment. We propose memory-efficient methods for mitigating the high memory demands of the abstraction-based techniques using neural network representations. To perform synthesis for reach-avoid specifications, we propose an on-the-fly algorithm that relies on compressed neural network representations of the forward and backward dynamics of the system. In contrast to usual applications of neural representations, our technique maintains soundness of the end-to-end process. To ensure this, we correct the output of the trained neural network such that the corrected output representations are sound with respect to the finite abstraction. For deployment, we provide a novel training algorithm to find a neural network representation of the synthesized controller and experimentally show that the controller can be correctly represented as a combination of a neural network and a look-up table that requires a substantially smaller memory. We demonstrate experimentally that our approach significantly reduces the memory requirements of abstraction-based methods. For the selected benchmarks, our approach reduces the memory requirements respectively for the synthesis and deployment by a factor of $1.31\times 10^5$ and $7.13\times 10^3$ on average, and up to $7.54\times 10^5$ and $3.18\times 10^4$. Although this reduction is at the cost of increased off-line computations to train the neural networks, all the steps of our approach are parallelizable and can be implemented on machines with higher number of processing units to reduce the required computational time.
Generating High-Precision Feedback for Programming Syntax Errors using Large Language Models
Phung, Tung, Cambronero, Josรฉ, Gulwani, Sumit, Kohn, Tobias, Majumdar, Rupak, Singla, Adish, Soares, Gustavo
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is to generate feedback comprising a fixed program along with a natural language explanation describing the errors/fixes, inspired by how a human tutor would give feedback. While using LLMs is promising, the critical challenge is to ensure high precision in the generated feedback, which is imperative before deploying such technology in classrooms. The main research question we study is: Can we develop LLMs-based feedback generation techniques with a tunable precision parameter, giving educators quality control over the feedback that students receive? To this end, we introduce PyFiXV, our technique to generate high-precision feedback powered by Codex. The key idea behind PyFiXV is to use a novel run-time validation mechanism to decide whether the generated feedback is suitable for sharing with the student; notably, this validation mechanism also provides a precision knob to educators. We perform an extensive evaluation using two real-world datasets of Python programs with syntax errors and show the efficacy of PyFiXV in generating high-precision feedback.
Online Reinforcement Learning with Uncertain Episode Lengths
Mandal, Debmalya, Radanovic, Goran, Gan, Jiarui, Singla, Adish, Majumdar, Rupak
Existing episodic reinforcement algorithms assume that the length of an episode is fixed across time and known a priori. In this paper, we consider a general framework of episodic reinforcement learning when the length of each episode is drawn from a distribution. We first establish that this problem is equivalent to online reinforcement learning with general discounting where the learner is trying to optimize the expected discounted sum of rewards over an infinite horizon, but where the discounting function is not necessarily geometric. We show that minimizing regret with this new general discounting is equivalent to minimizing regret with uncertain episode lengths. We then design a reinforcement learning algorithm that minimizes regret with general discounting but acts for the setting with uncertain episode lengths. We instantiate our general bound for different types of discounting, including geometric and polynomial discounting. We also show that we can obtain similar regret bounds even when the uncertainty over the episode lengths is unknown, by estimating the unknown distribution over time. Finally, we compare our learning algorithms with existing value-iteration based episodic RL algorithms in a grid-world environment.
Joint Inference of Reward Machines and Policies for Reinforcement Learning
Xu, Zhe, Gavran, Ivan, Ahmad, Yousef, Majumdar, Rupak, Neider, Daniel, Topcu, Ufuk, Wu, Bo
Incorporating high-level knowledge is an effective way to expedite reinforcement learning (RL), especially for complex tasks with sparse rewards. We investigate an RL problem where the high-level knowledge is in the form of reward machines, i.e., a type of Mealy machine that encodes the reward functions. We focus on a setting in which this knowledge is a priori not available to the learning agent. We develop an iterative algorithm that performs joint inference of reward machines and policies for RL (more specifically, q-learning). In each iteration, the algorithm maintains a hypothesis reward machine and a sample of RL episodes. It derives q-functions from the current hypothesis reward machine, and performs RL to update the q-functions. While performing RL, the algorithm updates the sample by adding RL episodes along which the obtained rewards are inconsistent with the rewards based on the current hypothesis reward machine. In the next iteration, the algorithm infers a new hypothesis reward machine from the updated sample. Based on an equivalence relationship we defined between states of reward machines, we transfer the q-functions between the hypothesis reward machines in consecutive iterations. We prove that the proposed algorithm converges almost surely to an optimal policy in the limit if a minimal reward machine can be inferred and the maximal length of each RL episode is sufficiently long. The experiments show that learning high-level knowledge in the form of reward machines can lead to fast convergence to optimal policies in RL, while standard RL methods such as q-learning and hierarchical RL methods fail to converge to optimal policies after a substantial number of training steps in many tasks.
Perception-in-the-Loop Adversarial Examples
Salamati, Mahmoud, Soudjani, Sadegh, Majumdar, Rupak
We present a scalable, black box, perception-in-the-loop technique to find adversarial examples for deep neural network classifiers. Black box means that our procedure only has input-output access to the classifier, and not to the internal structure, parameters, or intermediate confidence values. Perception-in-the-loop means that the notion of proximity between inputs can be directly queried from human participants rather than an arbitrarily chosen metric. Our technique is based on covariance matrix adaptation evolution strategy (CMA-ES), a black box optimization approach. CMA-ES explores the search space iteratively in a black box manner, by generating populations of candidates according to a distribution, choosing the best candidates according to a cost function, and updating the posterior distribution to favor the best candidates. We run CMA-ES using human participants to provide the fitness function, using the insight that the choice of best candidates in CMA-ES can be naturally modeled as a perception task: pick the top $k$ inputs perceptually closest to a fixed input. We empirically demonstrate that finding adversarial examples is feasible using small populations and few iterations. We compare the performance of CMA-ES on the MNIST benchmark with other black-box approaches using $L_p$ norms as a cost function, and show that it performs favorably both in terms of success in finding adversarial examples and in minimizing the distance between the original and the adversarial input. In experiments on the MNIST, CIFAR10, and GTSRB benchmarks, we demonstrate that CMA-ES can find perceptually similar adversarial inputs with a small number of iterations and small population sizes when using perception-in-the-loop. Finally, we show that networks trained specifically to be robust against $L_\infty$ norm can still be susceptible to perceptually similar adversarial examples.