Goto

Collaborating Authors

 Majchrowski, Dawid


TSPP: A Unified Benchmarking Tool for Time-series Forecasting

arXiv.org Artificial Intelligence

While machine learning has witnessed significant advancements, the emphasis has largely been on data acquisition and model creation. However, achieving a comprehensive assessment of machine learning solutions in real-world settings necessitates standardization throughout the entire pipeline. This need is particularly acute in time series forecasting, where diverse settings impede meaningful comparisons between various methods. To bridge this gap, we propose a unified benchmarking framework that exposes the crucial modelling and machine learning decisions involved in developing time series forecasting models. This framework fosters seamless integration of models and datasets, aiding both practitioners and researchers in their development efforts. We benchmark recently proposed models within this framework, demonstrating that carefully implemented deep learning models with minimal effort can rival gradient-boosting decision trees requiring extensive feature engineering and expert knowledge.


A Framework for Large Scale Synthetic Graph Dataset Generation

arXiv.org Artificial Intelligence

Recently there has been increasing interest in developing and deploying deep graph learning algorithms for many tasks, such as fraud detection and recommender systems. Albeit, there is a limited number of publicly available graph-structured datasets, most of which are tiny compared to production-sized applications or are limited in their application domain. This work tackles this shortcoming by proposing a scalable synthetic graph generation tool to scale the datasets to production-size graphs with trillions of edges and billions of nodes. The tool learns a series of parametric models from proprietary datasets that can be released to researchers to study various graph methods on the synthetic data increasing prototype development and novel applications. We demonstrate the generalizability of the framework across a series of datasets, mimicking structural and feature distributions as well as the ability to scale them across varying sizes demonstrating their usefulness for benchmarking and model development. Code can be found on github.


Relative Molecule Self-Attention Transformer

arXiv.org Artificial Intelligence

Self-supervised learning holds promise to revolutionize molecule property prediction - a central task to drug discovery and many more industries - by enabling data efficient learning from scarce experimental data. Despite significant progress, non-pretrained methods can be still competitive in certain settings. We reason that architecture might be a key bottleneck. In particular, enriching the backbone architecture with domain-specific inductive biases has been key for the success of self-supervised learning in other domains. In this spirit, we methodologically explore the design space of the self-attention mechanism tailored to molecular data. We identify a novel variant of self-attention adapted to processing molecules, inspired by the relative self-attention layer, which involves fusing embedded graph and distance relationships between atoms. Our main contribution is Relative Molecule Attention Transformer (R-MAT): a novel Transformer-based model based on the developed self-attention layer that achieves state-of-the-art or very competitive results across a~wide range of molecule property prediction tasks.