Goto

Collaborating Authors

 Mainen, Zachary F.


Demixed principal component analysis of population activity in higher cortical areas reveals independent representation of task parameters

arXiv.org Machine Learning

Neurons in higher cortical areas, such as the prefrontal cortex, are known to be tuned to a variety of sensory and motor variables. The resulting diversity of neural tuning often obscures the represented information. Here we introduce a novel dimensionality reduction technique, demixed principal component analysis (dPCA), which automatically discovers and highlights the essential features in complex population activities. We reanalyze population data from the prefrontal areas of rats and monkeys performing a variety of working memory and decision-making tasks. In each case, dPCA summarizes the relevant features of the population response in a single figure. The population activity is decomposed into a few demixed components that capture most of the variance in the data and that highlight dynamic tuning of the population to various task parameters, such as stimuli, decisions, rewards, etc. Moreover, dPCA reveals strong, condition-independent components of the population activity that remain unnoticed with conventional approaches.


Self-organization of Hebbian Synapses in Hippocampal Neurons

Neural Information Processing Systems

We are exploring the significance of biological complexity for neuronal computation. Here we demonstrate that Hebbian synapses in realistically-modeled hippocampal pyramidal cells may give rise to two novel forms of self -organization in response to structured synaptic input. First, on the basis of the electrotonic relationships between synaptic contacts, a cell may become tuned to a small subset of its input space. Second, the same mechanisms may produce clusters of potentiated synapses across the space of the dendrites. The latter type of self-organization may be functionally significant in the presence of nonlinear dendritic conductances.


Self-organization of Hebbian Synapses in Hippocampal Neurons

Neural Information Processing Systems

We are exploring the significance of biological complexity for neuronal computation. Here we demonstrate that Hebbian synapses in realistically-modeled hippocampal pyramidal cells may give rise to two novel forms of self -organization in response to structured synaptic input. First, on the basis of the electrotonic relationships between synaptic contacts, a cell may become tuned to a small subset of its input space. Second, the same mechanisms may produce clusters of potentiated synapses across the space of the dendrites. The latter type of self-organization may be functionally significant in the presence of nonlinear dendritic conductances.


Self-organization of Hebbian Synapses in Hippocampal Neurons

Neural Information Processing Systems

We are exploring the significance of biological complexity for neuronal computation. Here we demonstrate that Hebbian synapses in realistically-modeled hippocampalpyramidal cells may give rise to two novel forms of self-organization in response to structured synaptic input. First, on the basis of the electrotonic relationships between synaptic contacts, a cell may become tuned to a small subset of its input space. Second, the same mechanisms may produce clusters of potentiated synapses across the space of the dendrites. The latter type of self-organization may be functionally significant in the presence of nonlinear dendritic conductances.