Maillard, Odalric-Ambrym
AdaStop: sequential testing for efficient and reliable comparisons of Deep RL Agents
Mathieu, Timothée, Della Vecchia, Riccardo, Shilova, Alena, de Medeiros, Matheus Centa, Kohler, Hector, Maillard, Odalric-Ambrym, Preux, Philippe
The reproducibility of many experimental results in Deep Reinforcement Learning (RL) is under question. To solve this reproducibility crisis, we propose a theoretically sound methodology to compare multiple Deep RL algorithms. The performance of one execution of a Deep RL algorithm is random so that independent executions are needed to assess it precisely. When comparing several RL algorithms, a major question is how many executions must be made and how can we assure that the results of such a comparison is theoretically sound. Researchers in Deep RL often use less than 5 independent executions to compare algorithms: we claim that this is not enough in general. Moreover, when comparing several algorithms at once, the error of each comparison accumulates and must be taken into account with a multiple tests procedure to preserve low error guarantees. To address this problem in a statistically sound way, we introduce AdaStop, a new statistical test based on multiple group sequential tests. When comparing algorithms, AdaStop adapts the number of executions to stop as early as possible while ensuring that we have enough information to distinguish algorithms that perform better than the others in a statistical significant way. We prove both theoretically and empirically that AdaStop has a low probability of making an error (Family-Wise Error). Finally, we illustrate the effectiveness of AdaStop in multiple use-cases, including toy examples and difficult cases such as Mujoco environments.
Risk-aware linear bandits with convex loss
Saux, Patrick, Maillard, Odalric-Ambrym
In decision-making problems such as the multi-armed bandit, an agent learns sequentially by optimizing a certain feedback. While the mean reward criterion has been extensively studied, other measures that reflect an aversion to adverse outcomes, such as mean-variance or conditional value-at-risk (CVaR), can be of interest for critical applications (healthcare, agriculture). Algorithms have been proposed for such risk-aware measures under bandit feedback without contextual information. In this work, we study contextual bandits where such risk measures can be elicited as linear functions of the contexts through the minimization of a convex loss. A typical example that fits within this framework is the expectile measure, which is obtained as the solution of an asymmetric least-square problem. Using the method of mixtures for supermartingales, we derive confidence sequences for the estimation of such risk measures. We then propose an optimistic UCB algorithm to learn optimal risk-aware actions, with regret guarantees similar to those of generalized linear bandits. This approach requires solving a convex problem at each round of the algorithm, which we can relax by allowing only approximated solution obtained by online gradient descent, at the cost of slightly higher regret. We conclude by evaluating the resulting algorithms on numerical experiments.
Collaborative Algorithms for Online Personalized Mean Estimation
Asadi, Mahsa, Bellet, Aurélien, Maillard, Odalric-Ambrym, Tommasi, Marc
We consider an online estimation problem involving a set of agents. Each agent has access to a (personal) process that generates samples from a real-valued distribution and seeks to estimate its mean. We study the case where some of the distributions have the same mean, and the agents are allowed to actively query information from other agents. The goal is to design an algorithm that enables each agent to improve its mean estimate thanks to communication with other agents. The means as well as the number of distributions with same mean are unknown, which makes the task nontrivial. We introduce a novel collaborative strategy to solve this online personalized mean estimation problem. We analyze its time complexity and introduce variants that enjoy good performance in numerical experiments. We also extend our approach to the setting where clusters of agents with similar means seek to estimate the mean of their cluster.
Indexed Minimum Empirical Divergence for Unimodal Bandits
Saber, Hassan, Ménard, Pierre, Maillard, Odalric-Ambrym
We consider a multi-armed bandit problem specified by a set of one-dimensional family exponential distributions endowed with a unimodal structure. We introduce IMED-UB, a algorithm that optimally exploits the unimodal-structure, by adapting to this setting the Indexed Minimum Empirical Divergence (IMED) algorithm introduced by Honda and Takemura [2015]. Owing to our proof technique, we are able to provide a concise finite-time analysis of IMED-UB algorithm. Numerical experiments show that IMED-UB competes with the state-of-the-art algorithms.
From Optimality to Robustness: Dirichlet Sampling Strategies in Stochastic Bandits
Baudry, Dorian, Saux, Patrick, Maillard, Odalric-Ambrym
The stochastic multi-arm bandit problem has been extensively studied under standard assumptions on the arm's distribution (e.g bounded with known support, exponential family, etc). These assumptions are suitable for many real-world problems but sometimes they require knowledge (on tails for instance) that may not be precisely accessible to the practitioner, raising the question of the robustness of bandit algorithms to model misspecification. In this paper we study a generic Dirichlet Sampling (DS) algorithm, based on pairwise comparisons of empirical indices computed with re-sampling of the arms' observations and a data-dependent exploration bonus. We show that different variants of this strategy achieve provably optimal regret guarantees when the distributions are bounded and logarithmic regret for semi-bounded distributions with a mild quantile condition. We also show that a simple tuning achieve robustness with respect to a large class of unbounded distributions, at the cost of slightly worse than logarithmic asymptotic regret. We finally provide numerical experiments showing the merits of DS in a decision-making problem on synthetic agriculture data.
Sub-sampling for Efficient Non-Parametric Bandit Exploration
Baudry, Dorian, Kaufmann, Emilie, Maillard, Odalric-Ambrym
In this paper we propose the first multi-armed bandit algorithm based on re-sampling that achieves asymptotically optimal regret simultaneously for different families of arms (namely Bernoulli, Gaussian and Poisson distributions). Unlike Thompson Sampling which requires to specify a different prior to be optimal in each case, our proposal RB-SDA does not need any distribution-dependent tuning. RB-SDA belongs to the family of Sub-sampling Duelling Algorithms (SDA) which combines the sub-sampling idea first used by the BESA [1] and SSMC [2] algorithms with different sub-sampling schemes. In particular, RB-SDA uses Random Block sampling. We perform an experimental study assessing the flexibility and robustness of this promising novel approach for exploration in bandit models.
Is Standard Deviation the New Standard? Revisiting the Critic in Deep Policy Gradients
Flet-Berliac, Yannis, Ouhamma, Reda, Maillard, Odalric-Ambrym, Preux, Philippe
Policy gradient algorithms have proven to be successful in diverse decision making and control tasks. However, these methods suffer from high sample complexity and instability issues. In this paper, we address these challenges by providing a different approach for training the critic in the actor-critic framework. Our work builds on recent studies indicating that traditional actor-critic algorithms do not succeed in fitting the true value function, calling for the need to identify a better objective for the critic. In our method, the critic uses a new state-value (resp. state-action-value) function approximation that learns the relative value of the states (resp. state-action pairs) rather than their absolute value as in conventional actor-critic. We prove the theoretical consistency of the new gradient estimator and observe dramatic empirical improvement across a variety of continuous control tasks and algorithms. Furthermore, we validate our method in tasks with sparse rewards, where we provide experimental evidence and theoretical insights.
Improved Exploration in Factored Average-Reward MDPs
Talebi, Mohammad Sadegh, Jonsson, Anders, Maillard, Odalric-Ambrym
In reinforcement learning (RL), an agent repeatedly interacts with an unknown environment in order to maximize its cumulative reward. A typical model of the environment is a Markov decision process (MDP): in each decision epoch, the agent observes a state, takes an action and receives a reward before transiting to the next state. To achieve its objective, the agent has to estimate the parameters of the MDP from experience and learn a policy that maps states to actions. While doing so, the agent faces a choice between two basic strategies: exploration, i.e. discovering the effects of actions on the environment, and exploitation, i.e. using its current knowledge to maximize reward in the short term. Most of model-based RL algorithms treat the state as a black box.
Optimal Strategies for Graph-Structured Bandits
Saber, Hassan, Ménard, Pierre, Maillard, Odalric-Ambrym
We study a structured variant of the multi-armed bandit problem specified by a set of Bernoulli distributions $ \nu \!= \!(\nu\_{a,b})\_{a \in \mathcal{A}, b \in \mathcal{B}}$ with means $(\mu\_{a,b})\_{a \in \mathcal{A}, b \in \mathcal{B}}\!\in\![0,1]^{\mathcal{A}\times\mathcal{B}}$ and by a given weight matrix $\omega\!=\! (\omega\_{b,b'})\_{b,b' \in \mathcal{B}}$, where $ \mathcal{A}$ is a finite set of arms and $ \mathcal{B} $ is a finite set of users. The weight matrix $\omega$ is such that for any two users $b,b'\!\in\!\mathcal{B}, \text{max}\_{a\in\mathcal{A}}|\mu\_{a,b} \!-\! \mu\_{a,b'}| \!\leq\! \omega\_{b,b'} $. This formulation is flexible enough to capture various situations, from highly-structured scenarios ($\omega\!\in\!\{0,1\}^{\mathcal{B}\times\mathcal{B}}$) to fully unstructured setups ($\omega\!\equiv\! 1$).We consider two scenarios depending on whether the learner chooses only the actions to sample rewards from or both users and actions. We first derive problem-dependent lower bounds on the regret for this generic graph-structure that involves a structure dependent linear programming problem. Second, we adapt to this setting the Indexed Minimum Empirical Divergence (IMED) algorithm introduced by Honda and Takemura (2015), and introduce the IMED-GS$^\star$ algorithm. Interestingly, IMED-GS$^\star$ does not require computing the solution of the linear programming problem more than about $\log(T)$ times after $T$ steps, while being provably asymptotically optimal. Also, unlike existing bandit strategies designed for other popular structures, IMED-GS$^\star$ does not resort to an explicit forced exploration scheme and only makes use of local counts of empirical events. We finally provide numerical illustration of our results that confirm the performance of IMED-GS$^\star$.
Forced-exploration free Strategies for Unimodal Bandits
Saber, Hassan, Ménard, Pierre, Maillard, Odalric-Ambrym
We consider a multi-armed bandit problem specified by a set of Gaussian or Bernoulli distributions endowed with a unimodal structure. Although this problem has been addressed in the literature (Combes and Proutiere, 2014), the state-of-the-art algorithms for such structure make appear a forced-exploration mechanism. We introduce IMED-UB, the first forced-exploration free strategy that exploits the unimodal-structure, by adapting to this setting the Indexed Minimum Empirical Divergence (IMED) strategy introduced by Honda and Takemura (2015). This strategy is proven optimal. We then derive KLUCB-UB, a KLUCB version of IMED-UB, which is also proven optimal. Owing to our proof technique, we are further able to provide a concise finite-time analysis of both strategies in an unified way. Numerical experiments show that both IMED-UB and KLUCB-UB perform similarly in practice and outperform the state-of-the-art algorithms.