Goto

Collaborating Authors

 Mahyar, Hamidreza


ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance & Efficiency on a Specific Domain

arXiv.org Artificial Intelligence

Recent advancements in language models have started a new era of superior information retrieval and content generation, with embedding models playing an important role in optimizing data representation efficiency and performance. While benchmarks like the Massive Text Embedding Benchmark (MTEB) have standardized the evaluation of general domain embedding models, a gap remains in specialized fields such as chemistry, which require tailored approaches due to domain-specific challenges. This paper introduces a novel benchmark, the Chemical Text Embedding Benchmark (ChemTEB), designed specifically for the chemical sciences. ChemTEB addresses the unique linguistic and semantic complexities of chemical literature and data, offering a comprehensive suite of tasks on chemical domain data. Through the evaluation of 34 open-source and proprietary models using this benchmark, we illuminate the strengths and weaknesses of current methodologies in processing and understanding chemical information. Our work aims to equip the research community with a standardized, domain-specific evaluation framework, promoting the development of more precise and efficient NLP models for chemistry-related applications. Furthermore, it provides insights into the performance of generic models in a domain-specific context. ChemTEB comes with open-source code and data, contributing further to its accessibility and utility.


A Triplet-loss Dilated Residual Network for High-Resolution Representation Learning in Image Retrieval

arXiv.org Artificial Intelligence

Content-based image retrieval is the process of retrieving a subset of images from an extensive image gallery based on visual contents, such as color, shape or spatial relations, and texture. In some applications, such as localization, image retrieval is employed as the initial step. In such cases, the accuracy of the top-retrieved images significantly affects the overall system accuracy. The current paper introduces a simple yet efficient image retrieval system with a fewer trainable parameters, which offers acceptable accuracy in top-retrieved images. The proposed method benefits from a dilated residual convolutional neural network with triplet loss. Experimental evaluations show that this model can extract richer information (i.e., high-resolution representations) by enlarging the receptive field, thus improving image retrieval accuracy without increasing the depth or complexity of the model. To enhance the extracted representations' robustness, the current research obtains candidate regions of interest from each feature map and applies Generalized-Mean pooling to the regions. As the choice of triplets in a triplet-based network affects the model training, we employ a triplet online mining method. We test the performance of the proposed method under various configurations on two of the challenging image-retrieval datasets, namely Revisited Paris6k (RPar) and UKBench. The experimental results show an accuracy of 94.54 and 80.23 (mean precision at rank 10) in the RPar medium and hard modes and 3.86 (recall at rank 4) in the UKBench dataset, respectively.


Autonomous Vehicles: Open-Source Technologies, Considerations, and Development

arXiv.org Artificial Intelligence

Autonomous vehicles are the culmination of advances in many areas such as sensor technologies, artificial intelligence (AI), networking, and more. This paper will introduce the reader to the technologies that build autonomous vehicles. It will focus on open-source tools and libraries for autonomous vehicle development, making it cheaper and easier for developers and researchers to participate in the field. The topics covered are as follows. First, we will discuss the sensors used in autonomous vehicles and summarize their performance in different environments, costs, and unique features. Then we will cover Simultaneous Localization and Mapping (SLAM) and algorithms for each modality. Third, we will review popular open-source driving simulators, a cost-effective way to train machine learning models and test vehicle software performance. We will then highlight embedded operating systems and the security and development considerations when choosing one. After that, we will discuss Vehicle-to-Vehicle (V2V) and Internet-of-Vehicle (IoV) communication, which are areas that fuse networking technologies with autonomous vehicles to extend their functionality. We will then review the five levels of vehicle automation, commercial and open-source Advanced Driving Assistance Systems, and their features. Finally, we will touch on the major manufacturing and software companies involved in the field, their investments, and their partnerships. These topics will give the reader an understanding of the industry, its technologies, active research, and the tools available for developers to build autonomous vehicles.


SMGRL: A Scalable Multi-resolution Graph Representation Learning Framework

arXiv.org Artificial Intelligence

Graph convolutional networks (GCNs) allow us to learn topologically-aware node embeddings, which can be useful for classification or link prediction. However, by construction, they lack positional awareness and are unable to capture long-range dependencies without adding additional layers -- which in turn leads to over-smoothing and increased time and space complexity. Further, the complex dependencies between nodes make mini-batching challenging, limiting their applicability to large graphs. This paper proposes a Scalable Multi-resolution Graph Representation Learning (SMGRL) framework that enables us to learn multi-resolution node embeddings efficiently. Our framework is model-agnostic and can be applied to any existing GCN model. We dramatically reduce training costs by training only on a reduced-dimension coarsening of the original graph, then exploit self-similarity to apply the resulting algorithm at multiple resolutions. Inference of these multi-resolution embeddings can be distributed across multiple machines to reduce computational and memory requirements further. The resulting multi-resolution embeddings can be aggregated to yield high-quality node embeddings that capture both long- and short-range dependencies between nodes. Our experiments show that this leads to improved classification accuracy, without incurring high computational costs.


Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in FLAIR Images

arXiv.org Artificial Intelligence

Objective: Multiple Sclerosis (MS) is an autoimmune, and demyelinating disease that leads to lesions in the central nervous system. This disease can be tracked and diagnosed using Magnetic Resonance Imaging (MRI). Up to now a multitude of multimodality automatic biomedical approaches is used to segment lesions which are not beneficial for patients in terms of cost, time, and usability. The authors of the present paper propose a method employing just one modality (FLAIR image) to segment MS lesions accurately. Methods: A patch-based Convolutional Neural Network (CNN) is designed, inspired by 3D-ResNet and spatial-channel attention module, to segment MS lesions. The proposed method consists of three stages: (1) the contrast-limited adaptive histogram equalization (CLAHE) is applied to the original images and concatenated to the extracted edges in order to create 4D images; (2) the patches of size 80 * 80 * 80 * 2 are randomly selected from the 4D images; and (3) the extracted patches are passed into an attention-based CNN which is used to segment the lesions. Finally, the proposed method was compared to previous studies of the same dataset. Results: The current study evaluates the model, with a test set of ISIB challenge data. Experimental results illustrate that the proposed approach significantly surpasses existing methods in terms of Dice similarity and Absolute Volume Difference while the proposed method use just one modality (FLAIR) to segment the lesions. Conclusions: The authors have introduced an automated approach to segment the lesions which is based on, at most, two modalities as an input. The proposed architecture is composed of convolution, deconvolution, and an SCA-VoxRes module as an attention module. The results show, the proposed method outperforms well compare to other methods.


Medial Spectral Coordinates for 3D Shape Analysis

arXiv.org Artificial Intelligence

In recent years there has been a resurgence of interest in our community in the shape analysis of 3D objects represented by surface meshes, their voxelized interiors, or surface point clouds. In part, this interest has been stimulated by the increased availability of RGBD cameras, and by applications of computer vision to autonomous driving, medical imaging, and robotics. In these settings, spectral coordinates have shown promise for shape representation due to their ability to incorporate both local and global shape properties in a manner that is qualitatively invariant to isometric transformations. Yet, surprisingly, such coordinates have thus far typically considered only local surface positional or derivative information. In the present article, we propose to equip spectral coordinates with medial (object width) information, so as to enrich them. The key idea is to couple surface points that share a medial ball, via the weights of the adjacency matrix. We develop a spectral feature using this idea, and the algorithms to compute it. The incorporation of object width and medial coupling has direct benefits, as illustrated by our experiments on object classification, object part segmentation, and surface point correspondence.


A Nonparametric Bayesian Model for Sparse Temporal Multigraphs

arXiv.org Machine Learning

As the availability and importance of temporal interaction data--such as email communication--increases, it becomes increasingly important to understand the underlying structure that underpins these interactions. Often these interactions form a multigraph, where we might have multiple interactions between two entities. Such multigraphs tend to be sparse yet structured, and their distribution often evolves over time. Existing statistical models with interpretable parameters can capture some, but not all, of these properties. We propose a dynamic nonparametric model for interaction multigraphs that combines the sparsity of edge-exchangeable multigraphs with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic graph models.


A Matrix Factorization Model for Hellinger-based Trust Management in Social Internet of Things

arXiv.org Machine Learning

The Social Internet of Things (SIoT), integration of Internet of Things and Social networks paradigms, has been introduced to build a network of smart nodes which are capable of establishing social links. In order to deal with misbehavioral service provider nodes, service requestor nodes must evaluate their trustworthiness levels. In this paper, we propose a novel trust management mechanism in the SIoT to predict the most reliable service provider for a service requestor, that leads to reduce the risk of exposing to malicious nodes. We model an SIoT with a flexible bipartite graph (containing two sets of nodes: service providers and requestors), then build the corresponding social network among service requestor nodes, using Hellinger distance. After that, we develop a social trust model, by using nodes' centrality and similarity measures, to extract behavioral trust between the network nodes. Finally, a matrix factorization technique is designed to extract latent features of SIoT nodes to mitigate the data sparsity and cold start problems. We analyze the effect of parameters in the proposed trust prediction mechanism on prediction accuracy. The results indicate that feedbacks from the neighboring nodes of a specific service requestor with high Hellinger similarity in our mechanism outperforms the best existing methods. We also show that utilizing social trust model, which only considers the similarity measure, significantly improves the accuracy of the prediction mechanism. Furthermore, we evaluate the effectiveness of the proposed trust management system through a real-world SIoT application. Our results demonstrate that the proposed mechanism is resilient to different types of network attacks and it can accurately find the proper service provider with high trustworthiness.


Dynamic Nonparametric Edge-Clustering Model for Time-Evolving Sparse Networks

arXiv.org Machine Learning

Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models.