Mahmud, Asif
Parameter-Efficient Fine-Tuning of Large Language Models using Semantic Knowledge Tuning
Prottasha, Nusrat Jahan, Mahmud, Asif, Sobuj, Md. Shohanur Islam, Bhat, Prakash, Kowsher, Md, Yousefi, Niloofar, Garibay, Ozlem Ozmen
Large Language Models (LLMs) are gaining significant popularity in recent years for specialized tasks using prompts due to their low computational cost. Standard methods like prefix tuning utilize special, modifiable tokens that lack semantic meaning and require extensive training for best performance, often falling short. In this context, we propose a novel method called Semantic Knowledge Tuning (SK-Tuning) for prompt and prefix tuning that employs meaningful words instead of random tokens. This method involves using a fixed LLM to understand and process the semantic content of the prompt through zero-shot capabilities. Following this, it integrates the processed prompt with the input text to improve the model's performance on particular tasks. Our experimental results show that SK-Tuning exhibits faster training times, fewer parameters, and superior performance on tasks such as text classification and understanding compared to other tuning methods. This approach offers a promising method for optimizing the efficiency and effectiveness of LLMs in processing language tasks.
L-TUNING: Synchronized Label Tuning for Prompt and Prefix in LLMs
Kowsher, Md., Sobuj, Md. Shohanur Islam, Mahmud, Asif, Prottasha, Nusrat Jahan, Bhat, Prakash
Efficiently fine-tuning Large Language Models (LLMs) for specific tasks presents a considerable challenge in natural language processing. Traditional methods, like prompt or prefix tuning, typically rely on arbitrary tokens for training, leading to prolonged training times and generalized token use across various class labels. To address these issues, this paper introduces L-Tuning, an efficient fine-tuning approach designed for classification tasks within the Natural Language Inference (NLI) framework. Diverging from conventional methods, L-Tuning focuses on the fine-tuning of label tokens processed through a pre-trained LLM, thereby harnessing its pre-existing semantic knowledge. This technique not only improves the fine-tuning accuracy and efficiency but also facilitates the generation of distinct label embeddings for each class, enhancing the model's training nuance. Our experimental results indicate a significant improvement in training efficiency and classification accuracy with L-Tuning compared to traditional approaches, marking a promising advancement in fine-tuning LLMs for complex language tasks. \\ Code is available at: \textcolor{red}{\href{https://github.com/Kowsher/L-Tuning}{\texttt{https://github.com/Kowsher/L-Tuning}}}.