Mahlein, Anne-Katrin
SugarViT -- Multi-objective Regression of UAV Images with Vision Transformers and Deep Label Distribution Learning Demonstrated on Disease Severity Prediction in Sugar Beet
Günder, Maurice, Yamati, Facundo Ramón Ispizua, Alcántara, Abel Andree Barreto, Mahlein, Anne-Katrin, Sifa, Rafet, Bauckhage, Christian
Remote sensing and artificial intelligence are pivotal technologies of precision agriculture nowadays. The efficient retrieval of large-scale field imagery combined with machine learning techniques shows success in various tasks like phenotyping, weeding, cropping, and disease control. This work will introduce a machine learning framework for automatized large-scale plant-specific trait annotation for the use case disease severity scoring for Cercospora Leaf Spot (CLS) in sugar beet. With concepts of Deep Label Distribution Learning (DLDL), special loss functions, and a tailored model architecture, we develop an efficient Vision Transformer based model for disease severity scoring called SugarViT. One novelty in this work is the combination of remote sensing data with environmental parameters of the experimental sites for disease severity prediction. Although the model is evaluated on this special use case, it is held as generic as possible to also be applicable to various image-based classification and regression tasks. With our framework, it is even possible to learn models on multi-objective problems as we show by a pretraining on environmental metadata.
Combining expert knowledge and neural networks to model environmental stresses in agriculture
Cvejoski, Kostadin, Schuecker, Jannis, Mahlein, Anne-Katrin, Georgiev, Bogdan
The population of the earth is constantly growing and therefore also the demand for food. In consequence, breeding crop plants which most efficiently make use of the available cropland is one of the greatest challenges nowadays. In particular, plants which are resilient and resistant to environmental stresses are desirable. The development of such plants relies on the investigation of the interaction between the plant's genes and the environmental stresses. In order to be able to investigate the interaction a quantitative representation of the environmental stresses is needed. Here, we consider this representation combining state-of-the-art data-driven methods with expert-driven modeling from agriculture. Briefly put, it has been reported that environmental stress such as inappropriate or extreme temperature conditions, lack of sufficient moisture, etc., can significantly impede the life cycle development of corn, thus leading to yield reductions (cf.