Maheshwari, Gaurav
Synthetic Data Generation for Intersectional Fairness by Leveraging Hierarchical Group Structure
Maheshwari, Gaurav, Bellet, Aurélien, Denis, Pascal, Keller, Mikaela
In this paper, we introduce a data augmentation approach specifically tailored to enhance intersectional fairness in classification tasks. Our method capitalizes on the hierarchical structure inherent to intersectionality, by viewing groups as intersections of their parent categories. This perspective allows us to augment data for smaller groups by learning a transformation function that combines data from these parent groups. Our empirical analysis, conducted on four diverse datasets including both text and images, reveals that classifiers trained with this data augmentation approach achieve superior intersectional fairness and are more robust to ``leveling down'' when compared to methods optimizing traditional group fairness metrics.
Fair Without Leveling Down: A New Intersectional Fairness Definition
Maheshwari, Gaurav, Bellet, Aurélien, Denis, Pascal, Keller, Mikaela
In this work, we consider the problem of intersectional group fairness in the classification setting, where the objective is to learn discrimination-free models in the presence of several intersecting sensitive groups. First, we illustrate various shortcomings of existing fairness measures commonly used to capture intersectional fairness. Then, we propose a new definition called the $\alpha$-Intersectional Fairness, which combines the absolute and the relative performance across sensitive groups and can be seen as a generalization of the notion of differential fairness. We highlight several desirable properties of the proposed definition and analyze its relation to other fairness measures. Finally, we benchmark multiple popular in-processing fair machine learning approaches using our new fairness definition and show that they do not achieve any improvement over a simple baseline. Our results reveal that the increase in fairness measured by previous definitions hides a "leveling down" effect, i.e., degrading the best performance over groups rather than improving the worst one.
FairGrad: Fairness Aware Gradient Descent
Maheshwari, Gaurav, Perrot, Michaël
We address the problem of group fairness in classification, where the objective is to learn models that do not unjustly discriminate against subgroups of the population. Most existing approaches are limited to simple binary tasks or involve difficult to implement training mechanisms which reduces their practical applicability. In this paper, we propose FairGrad, a method to enforce fairness based on a re-weighting scheme that iteratively learns group specific weights based on whether they are advantaged or not. FairGrad is easy to implement, accommodates various standard fairness definitions, and comes with minimal overhead. Furthermore, we show that it is competitive with standard baselines over various datasets including ones used in natural language processing and computer vision. FairGrad is available as a PyPI package at - https://pypi.org/project/fairgrad
Message Passing for Hyper-Relational Knowledge Graphs
Galkin, Mikhail, Trivedi, Priyansh, Maheshwari, Gaurav, Usbeck, Ricardo, Lehmann, Jens
Hyper-relational knowledge graphs (KGs) (e.g., Wikidata) enable associating additional key-value pairs along with the main triple to disambiguate, or restrict the validity of a fact. In this work, we propose a message passing based graph encoder - StarE capable of modeling such hyper-relational KGs. Unlike existing approaches, StarE can encode an arbitrary number of additional information (qualifiers) along with the main triple while keeping the semantic roles of qualifiers and triples intact. We also demonstrate that existing benchmarks for evaluating link prediction (LP) performance on hyper-relational KGs suffer from fundamental flaws and thus develop a new Wikidata-based dataset - WD50K. Our experiments demonstrate that StarE based LP model outperforms existing approaches across multiple benchmarks. We also confirm that leveraging qualifiers is vital for link prediction with gains up to 25 MRR points compared to triple-based representations.
Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs
Chakraborty, Nilesh, Lukovnikov, Denis, Maheshwari, Gaurav, Trivedi, Priyansh, Lehmann, Jens, Fischer, Asja
Question answering has emerged as an intuitive way of querying structured data sources, and has attracted significant advancements over the years. In this article, we provide an overview over these recent advancements, focusing on neural network based question answering systems over knowledge graphs. We introduce readers to the challenges in the tasks, current paradigms of approaches, discuss notable advancements, and outline the emerging trends in the field. Through this article, we aim to provide newcomers to the field with a suitable entry point, and ease their process of making informed decisions while creating their own QA system.
Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs
Maheshwari, Gaurav, Trivedi, Priyansh, Lukovnikov, Denis, Chakraborty, Nilesh, Fischer, Asja, Lehmann, Jens
In this paper, we conduct an empirical investigation of neural query graph ranking approaches for the task of complex question answering over knowledge graphs. We experiment with six different ranking models and propose a novel self-attention based slot matching model which exploits the inherent structure of query graphs, our logical form of choice. Our proposed model generally outperforms the other models on two QA datasets over the DBpedia knowledge graph, evaluated in different settings. In addition, we show that transfer learning from the larger of those QA datasets to the smaller dataset yields substantial improvements, effectively offsetting the general lack of training data.