Mahendra, Rahmad
BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages
Muhammad, Shamsuddeen Hassan, Ousidhoum, Nedjma, Abdulmumin, Idris, Wahle, Jan Philip, Ruas, Terry, Beloucif, Meriem, de Kock, Christine, Surange, Nirmal, Teodorescu, Daniela, Ahmad, Ibrahim Said, Adelani, David Ifeoluwa, Aji, Alham Fikri, Ali, Felermino D. M. A., Alimova, Ilseyar, Araujo, Vladimir, Babakov, Nikolay, Baes, Naomi, Bucur, Ana-Maria, Bukula, Andiswa, Cao, Guanqun, Cardenas, Rodrigo Tufino, Chevi, Rendi, Chukwuneke, Chiamaka Ijeoma, Ciobotaru, Alexandra, Dementieva, Daryna, Gadanya, Murja Sani, Geislinger, Robert, Gipp, Bela, Hourrane, Oumaima, Ignat, Oana, Lawan, Falalu Ibrahim, Mabuya, Rooweither, Mahendra, Rahmad, Marivate, Vukosi, Piper, Andrew, Panchenko, Alexander, Ferreira, Charles Henrique Porto, Protasov, Vitaly, Rutunda, Samuel, Shrivastava, Manish, Udrea, Aura Cristina, Wanzare, Lilian Diana Awuor, Wu, Sophie, Wunderlich, Florian Valentin, Zhafran, Hanif Muhammad, Zhang, Tianhui, Zhou, Yi, Mohammad, Saif M.
People worldwide use language in subtle and complex ways to express emotions. While emotion recognition -- an umbrella term for several NLP tasks -- significantly impacts different applications in NLP and other fields, most work in the area is focused on high-resource languages. Therefore, this has led to major disparities in research and proposed solutions, especially for low-resource languages that suffer from the lack of high-quality datasets. In this paper, we present BRIGHTER-- a collection of multilabeled emotion-annotated datasets in 28 different languages. BRIGHTER covers predominantly low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances from various domains annotated by fluent speakers. We describe the data collection and annotation processes and the challenges of building these datasets. Then, we report different experimental results for monolingual and crosslingual multi-label emotion identification, as well as intensity-level emotion recognition. We investigate results with and without using LLMs and analyse the large variability in performance across languages and text domains. We show that BRIGHTER datasets are a step towards bridging the gap in text-based emotion recognition and discuss their impact and utility.
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
Lovenia, Holy, Mahendra, Rahmad, Akbar, Salsabil Maulana, Miranda, Lester James V., Santoso, Jennifer, Aco, Elyanah, Fadhilah, Akhdan, Mansurov, Jonibek, Imperial, Joseph Marvin, Kampman, Onno P., Moniz, Joel Ruben Antony, Habibi, Muhammad Ravi Shulthan, Hudi, Frederikus, Montalan, Railey, Ignatius, Ryan, Lopo, Joanito Agili, Nixon, William, Karlsson, Bรถrje F., Jaya, James, Diandaru, Ryandito, Gao, Yuze, Amadeus, Patrick, Wang, Bin, Cruz, Jan Christian Blaise, Whitehouse, Chenxi, Parmonangan, Ivan Halim, Khelli, Maria, Zhang, Wenyu, Susanto, Lucky, Ryanda, Reynard Adha, Hermawan, Sonny Lazuardi, Velasco, Dan John, Kautsar, Muhammad Dehan Al, Hendria, Willy Fitra, Moslem, Yasmin, Flynn, Noah, Adilazuarda, Muhammad Farid, Li, Haochen, Lee, Johanes, Damanhuri, R., Sun, Shuo, Qorib, Muhammad Reza, Djanibekov, Amirbek, Leong, Wei Qi, Do, Quyet V., Muennighoff, Niklas, Pansuwan, Tanrada, Putra, Ilham Firdausi, Xu, Yan, Tai, Ngee Chia, Purwarianti, Ayu, Ruder, Sebastian, Tjhi, William, Limkonchotiwat, Peerat, Aji, Alham Fikri, Keh, Sedrick, Winata, Genta Indra, Zhang, Ruochen, Koto, Fajri, Yong, Zheng-Xin, Cahyawijaya, Samuel
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
IndoCulture: Exploring Geographically-Influenced Cultural Commonsense Reasoning Across Eleven Indonesian Provinces
Koto, Fajri, Mahendra, Rahmad, Aisyah, Nurul, Baldwin, Timothy
Although commonsense reasoning is greatly shaped by cultural and geographical factors, previous studies on language models have predominantly centered on English cultures, potentially resulting in an Anglocentric bias. In this paper, we introduce IndoCulture, aimed at understanding the influence of geographical factors on language model reasoning ability, with a specific emphasis on the diverse cultures found within eleven Indonesian provinces. In contrast to prior works that relied on templates (Yin et al., 2022) and online scrapping (Fung et al., 2024), we created IndoCulture by asking local people to manually develop the context and plausible options based on predefined topics. Evaluations of 23 language models reveal several insights: (1) even the best open-source model struggles with an accuracy of 53.2%, (2) models often provide more accurate predictions for specific provinces, such as Bali and West Java, and (3) the inclusion of location contexts enhances performance, especially in larger models like GPT-4, emphasizing the significance of geographical context in commonsense reasoning.
NusaCrowd: Open Source Initiative for Indonesian NLP Resources
Cahyawijaya, Samuel, Lovenia, Holy, Aji, Alham Fikri, Winata, Genta Indra, Wilie, Bryan, Mahendra, Rahmad, Wibisono, Christian, Romadhony, Ade, Vincentio, Karissa, Koto, Fajri, Santoso, Jennifer, Moeljadi, David, Wirawan, Cahya, Hudi, Frederikus, Parmonangan, Ivan Halim, Alfina, Ika, Wicaksono, Muhammad Satrio, Putra, Ilham Firdausi, Rahmadani, Samsul, Oenang, Yulianti, Septiandri, Ali Akbar, Jaya, James, Dhole, Kaustubh D., Suryani, Arie Ardiyanti, Putri, Rifki Afina, Su, Dan, Stevens, Keith, Nityasya, Made Nindyatama, Adilazuarda, Muhammad Farid, Ignatius, Ryan, Diandaru, Ryandito, Yu, Tiezheng, Ghifari, Vito, Dai, Wenliang, Xu, Yan, Damapuspita, Dyah, Tho, Cuk, Karo, Ichwanul Muslim Karo, Fatyanosa, Tirana Noor, Ji, Ziwei, Fung, Pascale, Neubig, Graham, Baldwin, Timothy, Ruder, Sebastian, Sujaini, Herry, Sakti, Sakriani, Purwarianti, Ayu
We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken.
NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages
Winata, Genta Indra, Aji, Alham Fikri, Cahyawijaya, Samuel, Mahendra, Rahmad, Koto, Fajri, Romadhony, Ade, Kurniawan, Kemal, Moeljadi, David, Prasojo, Radityo Eko, Fung, Pascale, Baldwin, Timothy, Lau, Jey Han, Sennrich, Rico, Ruder, Sebastian
Natural language processing (NLP) has a significant impact on society via technologies such as machine translation and search engines. Despite its success, NLP technology is only widely available for high-resource languages such as English and Chinese, while it remains inaccessible to many languages due to the unavailability of data resources and benchmarks. In this work, we focus on developing resources for languages in Indonesia. Despite being the second most linguistically diverse country, most languages in Indonesia are categorized as endangered and some are even extinct. We develop the first-ever parallel resource for 10 low-resource languages in Indonesia. Our resource includes datasets, a multi-task benchmark, and lexicons, as well as a parallel Indonesian-English dataset. We provide extensive analyses and describe the challenges when creating such resources. We hope that our work can spark NLP research on Indonesian and other underrepresented languages.