Mahankali, Srinath
Random Latent Exploration for Deep Reinforcement Learning
Mahankali, Srinath, Hong, Zhang-Wei, Sekhari, Ayush, Rakhlin, Alexander, Agrawal, Pulkit
The ability to efficiently explore high-dimensional state spaces is essential for the practical success of deep Reinforcement Learning (RL). This paper introduces a new exploration technique called Random Latent Exploration (RLE), that combines the strengths of bonus-based and noise-based (two popular approaches for effective exploration in deep RL) exploration strategies. RLE leverages the idea of perturbing rewards by adding structured random rewards to the original task rewards in certain (random) states of the environment, to encourage the agent to explore the environment during training. RLE is straightforward to implement and performs well in practice. To demonstrate the practical effectiveness of RLE, we evaluate it on the challenging Atari and IsaacGym benchmarks and show that RLE exhibits higher overall scores across all the tasks than other approaches.
Randomly Initialized One-Layer Neural Networks Make Data Linearly Separable
Ghosal, Promit, Mahankali, Srinath, Sun, Yihang
Recently, neural networks have demonstrated remarkable capabilities in mapping two arbitrary sets to two linearly separable sets. The prospect of achieving this with randomly initialized neural networks is particularly appealing due to the computational efficiency compared to fully trained networks. This paper contributes by establishing that, given sufficient width, a randomly initialized one-layer neural network can, with high probability, transform two sets into two linearly separable sets without any training. Moreover, we furnish precise bounds on the necessary width of the neural network for this phenomenon to occur. Our initial bound exhibits exponential dependence on the input dimension while maintaining polynomial dependence on all other parameters. In contrast, our second bound is independent of input dimension, effectively surmounting the curse of dimensionality. The main tools used in our proof heavily relies on a fusion of geometric principles and concentration of random matrices.