Mahabadi, Sepideh
Efficiently Computing Similarities to Private Datasets
Backurs, Arturs, Lin, Zinan, Mahabadi, Sepideh, Silwal, Sandeep, Tarnawski, Jakub
Many methods in differentially private model training rely on computing the similarity between a query point (such as public or synthetic data) and private data. We abstract out this common subroutine and study the following fundamental algorithmic problem: Given a similarity function $f$ and a large high-dimensional private dataset $X \subset \mathbb{R}^d$, output a differentially private (DP) data structure which approximates $\sum_{x \in X} f(x,y)$ for any query $y$. We consider the cases where $f$ is a kernel function, such as $f(x,y) = e^{-\|x-y\|_2^2/\sigma^2}$ (also known as DP kernel density estimation), or a distance function such as $f(x,y) = \|x-y\|_2$, among others. Our theoretical results improve upon prior work and give better privacy-utility trade-offs as well as faster query times for a wide range of kernels and distance functions. The unifying approach behind our results is leveraging `low-dimensional structures' present in the specific functions $f$ that we study, using tools such as provable dimensionality reduction, approximation theory, and one-dimensional decomposition of the functions. Our algorithms empirically exhibit improved query times and accuracy over prior state of the art. We also present an application to DP classification. Our experiments demonstrate that the simple methodology of classifying based on average similarity is orders of magnitude faster than prior DP-SGD based approaches for comparable accuracy.
Core-sets for Fair and Diverse Data Summarization
Mahabadi, Sepideh, Trajanovski, Stojan
We study core-set construction algorithms for the task of Diversity Maximization under fairness/partition constraint. Given a set of points $P$ in a metric space partitioned into $m$ groups, and given $k_1,\ldots,k_m$, the goal of this problem is to pick $k_i$ points from each group $i$ such that the overall diversity of the $k=\sum_i k_i$ picked points is maximized. We consider two natural diversity measures: sum-of-pairwise distances and sum-of-nearest-neighbor distances, and show improved core-set construction algorithms with respect to these measures. More precisely, we show the first constant factor core-set w.r.t. sum-of-pairwise distances whose size is independent of the size of the dataset and the aspect ratio. Second, we show the first core-set w.r.t. the sum-of-nearest-neighbor distances. Finally, we run several experiments showing the effectiveness of our core-set approach. In particular, we apply constrained diversity maximization to summarize a set of timed messages that takes into account the messages' recency. Specifically, the summary should include more recent messages compared to older ones. This is a real task in one of the largest communication platforms, affecting the experience of hundreds of millions daily active users. By utilizing our core-set method for this task, we achieve a 100x speed-up while losing the diversity by only a few percent. Moreover, our approach allows us to improve the space usage of the algorithm in the streaming setting.
Composable Coresets for Determinant Maximization: Greedy is Almost Optimal
Gollapudi, Siddharth, Mahabadi, Sepideh, Sivashankar, Varun
Given a set of $n$ vectors in $\mathbb{R}^d$, the goal of the \emph{determinant maximization} problem is to pick $k$ vectors with the maximum volume. Determinant maximization is the MAP-inference task for determinantal point processes (DPP) and has recently received considerable attention for modeling diversity. As most applications for the problem use large amounts of data, this problem has been studied in the relevant \textit{composable coreset} setting. In particular, [Indyk-Mahabadi-OveisGharan-Rezaei--SODA'20, ICML'19] showed that one can get composable coresets with optimal approximation factor of $\tilde O(k)^k$ for the problem, and that a local search algorithm achieves an almost optimal approximation guarantee of $O(k)^{2k}$. In this work, we show that the widely-used Greedy algorithm also provides composable coresets with an almost optimal approximation factor of $O(k)^{3k}$, which improves over the previously known guarantee of $C^{k^2}$, and supports the prior experimental results showing the practicality of the greedy algorithm as a coreset. Our main result follows by showing a local optimality property for Greedy: swapping a single point from the greedy solution with a vector that was not picked by the greedy algorithm can increase the volume by a factor of at most $(1+\sqrt{k})$. This is tight up to the additive constant $1$. Finally, our experiments show that the local optimality of the greedy algorithm is even lower than the theoretical bound on real data sets.
Approximation Algorithms for Fair Range Clustering
Hotegni, Sèdjro S., Mahabadi, Sepideh, Vakilian, Ali
This paper studies the fair range clustering problem in which the data points are from different demographic groups and the goal is to pick $k$ centers with the minimum clustering cost such that each group is at least minimally represented in the centers set and no group dominates the centers set. More precisely, given a set of $n$ points in a metric space $(P,d)$ where each point belongs to one of the $\ell$ different demographics (i.e., $P = P_1 \uplus P_2 \uplus \cdots \uplus P_\ell$) and a set of $\ell$ intervals $[\alpha_1, \beta_1], \cdots, [\alpha_\ell, \beta_\ell]$ on desired number of centers from each group, the goal is to pick a set of $k$ centers $C$ with minimum $\ell_p$-clustering cost (i.e., $(\sum_{v\in P} d(v,C)^p)^{1/p}$) such that for each group $i\in \ell$, $|C\cap P_i| \in [\alpha_i, \beta_i]$. In particular, the fair range $\ell_p$-clustering captures fair range $k$-center, $k$-median and $k$-means as its special cases. In this work, we provide efficient constant factor approximation algorithms for fair range $\ell_p$-clustering for all values of $p\in [1,\infty)$.
Near Neighbor: Who is the Fairest of Them All?
Har-Peled, Sariel, Mahabadi, Sepideh
Nowadays, many important decisions, such as college admissions, offering home loans, or estimating the likelihood of recidivism, rely on machine learning algorithms. There is a growing concern about the fairness of the algorithms and creating bias toward a specific population or feature [HPS16, Cho17, MSP16, KLL 17]. While algorithms are not inherently biased, nevertheless, they may amplify the already existing biases in the data. Hence, this concern has led to the design of fair algorithms for many different applications, e.g., [DOBD 18, ABD 18, PRW 17, CKLV19, EJJ 19, OA18, CKLV17, BIO 19, BCN19, KSAM19]. Bias in the data used for training machine learning algorithms is a monumental challenge in creating fair algorithms [HGB 07, TE11, ZVGRG17, Cho17]. Here, we are interested in a somewhat different problem, of handling the bias introduced by the data-structures used by such algorithms. Specifically, data-structures may introduce bias in the data stored in them, and the way they answer queries, because of the way the data is stored and how it is being accessed. Such a defect leads to selection bias by the algorithms using such data-structures.
Composable Core-sets for Determinant Maximization Problems via Spectral Spanners
Indyk, Piotr, Mahabadi, Sepideh, Gharan, Shayan Oveis, Rezaei, Alireza
We study a spectral generalization of classical combinatorial graph spanners to the spectral setting. Given a set of vectors $V\subseteq \Re^d$, we say a set $U\subseteq V$ is an $\alpha$-spectral spanner if for all $v\in V$ there is a probability distribution $\mu_v$ supported on $U$ such that $$vv^\intercal \preceq \alpha\cdot\mathbb{E}_{u\sim\mu_v} uu^\intercal.$$ We show that any set $V$ has an $\tilde{O}(d)$-spectral spanner of size $\tilde{O}(d)$ and this bound is almost optimal in the worst case. We use spectral spanners to study composable core-sets for spectral problems. We show that for many objective functions one can use a spectral spanner, independent of the underlying functions, as a core-set and obtain almost optimal composable core-sets. For example, for the determinant maximization problem we obtain an $\tilde{O}(k)^k$-composable core-set and we show that this is almost optimal in the worst case. Our algorithm is a spectral analogue of the classical greedy algorithm for finding (combinatorial) spanners in graphs. We expect that our spanners find many other applications in distributed or parallel models of computation. Our proof is spectral. As a side result of our techniques, we show that the rank of diagonally dominant lower-triangular matrices are robust under `small perturbations' which could be of independent interests.