Goto

Collaborating Authors

 Mago, Vijay


Augmenting Reddit Posts to Determine Wellness Dimensions impacting Mental Health

arXiv.org Artificial Intelligence

Amid ongoing health crisis, there is a growing necessity to discern possible signs of Wellness Dimensions (WD) manifested in self-narrated text. As the distribution of WD on social media data is intrinsically imbalanced, we experiment the generative NLP models for data augmentation to enable further improvement in the pre-screening task of classifying WD. To this end, we propose a simple yet effective data augmentation approach through prompt-based Generative NLP models, and evaluate the ROUGE scores and syntactic/semantic similarity among existing interpretations and augmented data. Our approach with ChatGPT model surpasses all the other methods and achieves improvement over baselines such as Easy-Data Augmentation and Backtranslation. Introducing data augmentation to generate more training samples and balanced dataset, results in the improved F-score and the Matthew's Correlation Coefficient for upto 13.11% and 15.95%, respectively.


An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts

arXiv.org Artificial Intelligence

With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for inferring mental illness from social media resources, points to natural language processing as a lens for determining Interpersonal Risk Factors (IRF) in human writings. Motivated with limited availability of datasets for social NLP research community, we construct and release a new annotated dataset with human-labelled explanations and classification of IRF affecting mental disturbance on social media: (i) Thwarted Belongingness (TBe), and (ii) Perceived Burdensomeness (PBu). We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile.


NODDLE: Node2vec based deep learning model for link prediction

arXiv.org Artificial Intelligence

Computing the probability of an edge's existence in a graph network is known as link prediction. While traditional methods calculate the similarity between two given nodes in a static network, recent research has focused on evaluating networks that evolve dynamically. Although deep learning techniques and network representation learning algorithms, such as node2vec, show remarkable improvements in prediction accuracy, the Stochastic Gradient Descent (SGD) method of node2vec tends to fall into a mediocre local optimum value due to a shortage of prior network information, resulting in failure to capture the global structure of the network. To tackle this problem, we propose NODDLE (integration of NOde2vec anD Deep Learning mEthod), a deep learning model which incorporates the features extracted by node2vec and feeds them into a four layer hidden neural network. NODDLE takes advantage of adaptive learning optimizers such as Adam, Adamax, Adadelta, and Adagrad to improve the performance of link prediction. Experimental results show that this method yields better results than the traditional methods on various social network datasets. Keywords: Graph learning Social networks Link prediction Web information systems.


Automating Transfer Credit Assessment in Student Mobility -- A Natural Language Processing-based Approach

arXiv.org Artificial Intelligence

Student mobility or academic mobility involves students moving between institutions during their post-secondary education, and one of the challenging tasks in this process is to assess the transfer credits to be offered to the incoming student. In general, this process involves domain experts comparing the learning outcomes of the courses, to decide on offering transfer credits to the incoming students. This manual implementation is not only labor-intensive but also influenced by undue bias and administrative complexity. The proposed research article focuses on identifying a model that exploits the advancements in the field of Natural Language Processing (NLP) to effectively automate this process. Given the unique structure, domain specificity, and complexity of learning outcomes (LOs), a need for designing a tailor-made model arises. The proposed model uses a clustering-inspired methodology based on knowledge-based semantic similarity measures to assess the taxonomic similarity of LOs and a transformer-based semantic similarity model to assess the semantic similarity of the LOs. The similarity between LOs is further aggregated to form course to course similarity. Due to the lack of quality benchmark datasets, a new benchmark dataset containing seven course-to-course similarity measures is proposed. Understanding the inherent need for flexibility in the decision-making process the aggregation part of the model offers tunable parameters to accommodate different scenarios. While providing an efficient model to assess the similarity between courses with existing resources, this research work steers future research attempts to apply NLP in the field of articulation in an ideal direction by highlighting the persisting research gaps.


The Homophily Principle in Social Network Analysis

arXiv.org Artificial Intelligence

In recent years, social media has become a ubiquitous and integral part of social networking. One of the major attentions made by social researchers is the tendency of like-minded people to interact with one another in social groups, a concept which is known as Homophily. The study of homophily can provide eminent insights into the flow of information and behaviors within a society and this has been extremely useful in analyzing the formations of online communities. In this paper, we review and survey the effect of homophily in social networks and summarize the state of art methods that has been proposed in the past years to identify and measure the effect of homophily in multiple types of social networks and we conclude with a critical discussion of open challenges and directions for future research.


A Supervised Learning Approach For Heading Detection

arXiv.org Machine Learning

As the Portable Document Format (PDF) file format increases in popularity, research in analysing its structure for text extraction and analysis is necessary. Detecting headings can be a crucial component of classifying and extracting meaningful data. This research involves training a supervised learning model to detect headings with features carefully selected through recursive feature elimination. The best performing classifier had an accuracy of 96.95%, sensitivity of 0.986 and a specificity of 0.953. This research into heading detection contributes to the field of PDF based text extraction and can be applied to the automation of large scale PDF text analysis in a variety of professional and policy based contexts.


SafeRNet: Safe Transportation Routing in the era of Internet of Vehicles and Mobile Crowd Sensing

arXiv.org Machine Learning

World wide road traffic fatality and accident rates are high, and this is true even in technologically advanced countries like the USA. Despite the advances in Intelligent Transportation Systems, safe transportation routing i.e., finding safest routes is largely an overlooked paradigm. In recent years, large amount of traffic data has been produced by people, Internet of Vehicles and Internet of Things (IoT). Also, thanks to advances in cloud computing and proliferation of mobile communication technologies, it is now possible to perform analysis on vast amount of generated data (crowd sourced) and deliver the result back to users in real time. This paper proposes SafeRNet, a safe route computation framework which takes advantage of these technologies to analyze streaming traffic data and historical data to effectively infer safe routes and deliver them back to users in real time. SafeRNet utilizes Bayesian network to formulate safe route model. Furthermore, a case study is presented to demonstrate the effectiveness of our approach using real traffic data. SafeRNet intends to improve drivers safety in a modern technology rich transportation system.