Goto

Collaborating Authors

 Maeda, Guilherme


Two-fingered Hand with Gear-type Synchronization Mechanism with Magnet for Improved Small and Offset Objects Grasping: F2 Hand

arXiv.org Artificial Intelligence

A problem that plagues robotic grasping is the misalignment of the object and gripper due to difficulties in precise localization, actuation, etc. Under-actuated robotic hands with compliant mechanisms are used to adapt and compensate for these inaccuracies. However, these mechanisms come at the cost of controllability and coordination. For instance, adaptive functions that let the fingers of a two-fingered gripper adapt independently may affect the coordination necessary for grasping small objects. In this work, we develop a two-fingered robotic hand capable of grasping objects that are offset from the gripper's center, while still having the requisite coordination for grasping small objects via a novel gear-type synchronization mechanism with a magnet. This gear synchronization mechanism allows the adaptive finger's tips to be aligned enabling it to grasp objects as small as toothpicks and washers. The magnetic component allows this coordination to automatically turn off when needed, allowing for the grasping of objects that are offset/misaligned from the gripper. This equips the hand with the capability of grasping light, fragile objects (strawberries, creampuffs, etc) to heavy frying pan lids, all while maintaining their position and posture which is vital in numerous applications that require precise positioning or careful manipulation.


Anticipative Interaction Primitives for Human-Robot Collaboration

AAAI Conferences

This paper introduces our initial investigation on the problem of providing a semi-autonomous robot collaborator with anticipative capabilities to predict human actions. Anticipative robot behavior is a desired characteristic of robot collaborators that lead to fluid, proactive interactions. We are particularly interested in improving reactive methods that rely on human action recognition to activate the corresponding robot action. Action recognition invariably causes delay in the robot’s response, and the goal of our method is to eliminate this delay by predicting the next human action. Prediction is achieved by using a lookup table containing variations of assembly sequences, previously demonstrated by different users. The method uses the nearest neighbor sequence in the table that matches the actual sequence of human actions. At the movement level, our method uses a probabilistic representation of interaction primitives to generate robot trajectories. The method is demonstrated using a 7 degree-of-freedom lightweight arm equipped with a 5-finger hand on an assembly task consisting of 17 steps.