Madhiwalla, Neha
Preliminary Study of the Impact of AI-Based Interventions on Health and Behavioral Outcomes in Maternal Health Programs
Dasgupta, Arpan, Boehmer, Niclas, Madhiwalla, Neha, Hedge, Aparna, Wilder, Bryan, Tambe, Milind, Taneja, Aparna
Automated voice calls are an effective method of delivering maternal and child health information to mothers in underserved communities. One method to fight dwindling listenership is through an intervention in which health workers make live service calls. Previous work has shown that we can use AI to identify beneficiaries whose listenership gets the greatest boost from an intervention. It has also been demonstrated that listening to the automated voice calls consistently leads to improved health outcomes for the beneficiaries of the program. These two observations combined suggest the positive effect of AI-based intervention scheduling on behavioral and health outcomes. This study analyzes the relationship between the two. Specifically, we are interested in mothers' health knowledge in the post-natal period, measured through survey questions. We present evidence that improved listenership through AI-scheduled interventions leads to a better understanding of key health issues during pregnancy and infancy. This improved understanding has the potential to benefit the health outcomes of mothers and their babies.
Decision-Focused Learning in Restless Multi-Armed Bandits with Application to Maternal and Child Care Domain
Wang, Kai, Verma, Shresth, Mate, Aditya, Shah, Sanket, Taneja, Aparna, Madhiwalla, Neha, Hegde, Aparna, Tambe, Milind
This paper studies restless multi-armed bandit (RMAB) problems with unknown arm transition dynamics but with known correlated arm features. The goal is to learn a model to predict transition dynamics given features, where the Whittle index policy solves the RMAB problems using predicted transitions. However, prior works often learn the model by maximizing the predictive accuracy instead of final RMAB solution quality, causing a mismatch between training and evaluation objectives. To address this shortcoming we propose a novel approach for decision-focused learning in RMAB that directly trains the predictive model to maximize the Whittle index solution quality. We present three key contributions: (i) we establish the differentiability of the Whittle index policy to support decision-focused learning; (ii) we significantly improve the scalability of previous decision-focused learning approaches in sequential problems; (iii) we apply our algorithm to the service call scheduling problem on a real-world maternal and child health domain. Our algorithm is the first for decision-focused learning in RMAB that scales to large-scale real-world problems. \end{abstract}
Field Study in Deploying Restless Multi-Armed Bandits: Assisting Non-Profits in Improving Maternal and Child Health
Mate, Aditya, Madaan, Lovish, Taneja, Aparna, Madhiwalla, Neha, Verma, Shresth, Singh, Gargi, Hegde, Aparna, Varakantham, Pradeep, Tambe, Milind
The widespread availability of cell phones has enabled non-profits to deliver critical health information to their beneficiaries in a timely manner. This paper describes our work to assist non-profits that employ automated messaging programs to deliver timely preventive care information to beneficiaries (new and expecting mothers) during pregnancy and after delivery. Unfortunately, a key challenge in such information delivery programs is that a significant fraction of beneficiaries drop out of the program. Yet, non-profits often have limited health-worker resources (time) to place crucial service calls for live interaction with beneficiaries to prevent such engagement drops. To assist non-profits in optimizing this limited resource, we developed a Restless Multi-Armed Bandits (RMABs) system. One key technical contribution in this system is a novel clustering method of offline historical data to infer unknown RMAB parameters. Our second major contribution is evaluation of our RMAB system in collaboration with an NGO, via a real-world service quality improvement study. The study compared strategies for optimizing service calls to 23003 participants over a period of 7 weeks to reduce engagement drops. We show that the RMAB group provides statistically significant improvement over other comparison groups, reducing ~ 30% engagement drops. To the best of our knowledge, this is the first study demonstrating the utility of RMABs in real world public health settings. We are transitioning our RMAB system to the NGO for real-world use.