Goto

Collaborating Authors

 Macdonald, Jan


Let's Enhance: A Deep Learning Approach to Extreme Deblurring of Text Images

arXiv.org Artificial Intelligence

This work presents a novel deep-learning-based pipeline for the inverse problem of image deblurring, leveraging augmentation and pre-training with synthetic data. Our results build on our winning submission to the recent Helsinki Deblur Challenge 2021, whose goal was to explore the limits of state-of-the-art deblurring algorithms in a real-world data setting. The task of the challenge was to deblur out-of-focus images of random text, thereby in a downstream task, maximizing an optical-character-recognition-based score function. A key step of our solution is the data-driven estimation of the physical forward model describing the blur process. This enables a stream of synthetic data, generating pairs of ground-truth and blurry images on-the-fly, which is used for an extensive augmentation of the small amount of challenge data provided. The actual deblurring pipeline consists of an approximate inversion of the radial lens distortion (determined by the estimated forward model) and a U-Net architecture, which is trained end-to-end. Our algorithm was the only one passing the hardest challenge level, achieving over $70\%$ character recognition accuracy. Our findings are well in line with the paradigm of data-centric machine learning, and we demonstrate its effectiveness in the context of inverse problems. Apart from a detailed presentation of our methodology, we also analyze the importance of several design choices in a series of ablation studies. The code of our challenge submission is available under https://github.com/theophil-trippe/HDC_TUBerlin_version_1.


Solving Inverse Problems With Deep Neural Networks -- Robustness Included?

arXiv.org Artificial Intelligence

In the past five years, deep learning methods have become state-of-the-art in solving various inverse problems. Before such approaches can find application in safety-critical fields, a verification of their reliability appears mandatory. Recent works have pointed out instabilities of deep neural networks for several image reconstruction tasks. In analogy to adversarial attacks in classification, it was shown that slight distortions in the input domain may cause severe artifacts. The present article sheds new light on this concern, by conducting an extensive study of the robustness of deep-learning-based algorithms for solving underdetermined inverse problems. This covers compressed sensing with Gaussian measurements as well as image recovery from Fourier and Radon measurements, including a real-world scenario for magnetic resonance imaging (using the NYU-fastMRI dataset). Our main focus is on computing adversarial perturbations of the measurements that maximize the reconstruction error. A distinctive feature of our approach is the quantitative and qualitative comparison with total-variation minimization, which serves as a provably robust reference method. In contrast to previous findings, our results reveal that standard end-to-end network architectures are not only resilient against statistical noise, but also against adversarial perturbations. All considered networks are trained by common deep learning techniques, without sophisticated defense strategies.


A Rate-Distortion Framework for Explaining Neural Network Decisions

arXiv.org Machine Learning

We formalise the widespread idea of interpreting neural network decisions as an explicit optimisation problem in a rate-distortion framework. A set of input features is deemed relevant for a classification decision if the expected classifier score remains nearly constant when randomising the remaining features. We discuss the computational complexity of finding small sets of relevant features and show that the problem is complete for $\mathsf{NP}^\mathsf{PP}$, an important class of computational problems frequently arising in AI tasks. Furthermore, we show that it even remains $\mathsf{NP}$-hard to only approximate the optimal solution to within any non-trivial approximation factor. Finally, we consider a continuous problem relaxation and develop a heuristic solution strategy based on assumed density filtering for deep ReLU neural networks. We present numerical experiments for two image classification data sets where we outperform established methods in particular for sparse explanations of neural network decisions.


The Oracle of DLphi

arXiv.org Machine Learning

This paper takes aim at achieving nothing less than the impossible. To be more precise, we seek to predict labels of unknown data from entirely uncorrelated labelled training data. This will be accomplished by an application of an algorithm based on deep learning, as well as, by invoking one of the most fundamental concepts of set theory. Estimating the behaviour of a system in unknown situations is one of the central problems of humanity. Indeed, we are constantly trying to produce predictions for future events to be able to prepare ourselves.