Maaten, Laurens
Latent Variable Models for Predicting File Dependencies in Large-Scale Software Development
Hu, Diane, Maaten, Laurens, Cho, Youngmin, Lerner, Sorin, Saul, Lawrence K.
When software developers modify one or more files in a large code base, they must also identify and update other related files. Many file dependencies can be detected by mining the development history of the code base: in essence, groups of related files are revealed by the logs of previous workflows. From data of this form, we show how to detect dependent files by solving a problem in binary matrix completion. We explore different latent variable models (LVMs) for this problem, including Bernoulli mixture models, exponential family PCA, restricted Boltzmann machines, and fully Bayesian approaches. We evaluate these models on the development histories of three large, open-source software systems: Mozilla Firefox, Eclipse Subversive, and Gimp.
On Herding and the Perceptron Cycling Theorem
Gelfand, Andrew, Chen, Yutian, Maaten, Laurens, Welling, Max
The paper develops a connection between traditional perceptron algorithms and recently introduced herding algorithms. It is shown that both algorithms can be viewed as an application of the perceptron cycling theorem. This connection strengthens some herding results and suggests new (supervised) herding algorithms that, like CRFs or discriminative RBMs, make predictions by conditioning on the input attributes. We develop and investigate variants of conditional herding, and show that conditional herding leads to practical algorithms that perform better than or on par with related classifiers such as the voted perceptron and the discriminative RBM. Papers published at the Neural Information Processing Systems Conference.
Latent Variable Models for Predicting File Dependencies in Large-Scale Software Development
Hu, Diane, Maaten, Laurens, Cho, Youngmin, Lerner, Sorin, Saul, Lawrence K.
When software developers modify one or more files in a large code base, they must also identify and update other related files. Many file dependencies can be detected by mining the development history of the code base: in essence, groups of related files are revealed by the logs of previous workflows. From data of this form, we show how to detect dependent files by solving a problem in binary matrix completion. We explore different latent variable models (LVMs) for this problem, including Bernoulli mixture models, exponential family PCA, restricted Boltzmann machines, and fully Bayesian approaches. We evaluate these models on the development histories of three large, open-source software systems: Mozilla Firefox, Eclipse Subversive, and Gimp. In all of these applications, we find that LVMs improve the performance of related file prediction over current leading methods.
On Herding and the Perceptron Cycling Theorem
Gelfand, Andrew, Chen, Yutian, Maaten, Laurens, Welling, Max
The paper develops a connection between traditional perceptron algorithms and recently introduced herding algorithms. It is shown that both algorithms can be viewed as an application of the perceptron cycling theorem. This connection strengthens some herding results and suggests new (supervised) herding algorithms that, like CRFs or discriminative RBMs, make predictions by conditioning on the input attributes. We develop and investigate variants of conditional herding, and show that conditional herding leads to practical algorithms that perform better than or on par with related classifiers such as the voted perceptron and the discriminative RBM.