Maass, Wolfgang
On the Computational Complexity of Networks of Spiking Neurons
Maass, Wolfgang
Agnostic PAC-Learning of Functions on Analog Neural Nets
Maass, Wolfgang
Abstract: There exist a number of negative results ([J), [BR), [KV]) about learning on neural nets in Valiant's model [V) for probably approximately correctlearning ("PAClearning"). These negative results are based on an asymptotic analysis where one lets the number of nodes in the neural net go to infinit.y. Hence this analysis is less adequate forthe investigation of learning on a small fixed neural net.
Agnostic PAC-Learning of Functions on Analog Neural Nets
Maass, Wolfgang
Abstract: There exist a number of negative results ([J), [BR), [KV]) about learning on neural nets in Valiant's model [V) for probably approximately correct learning ("PAClearning"). These negative results are based on an asymptotic analysis where one lets the number of nodes in the neural net go to infinit.y. Hence this analysis is less adequate for the investigation of learning on a small fixed neural net.
A Method for the Efficient Design of Boltzmann Machines for Classiffication Problems
Gupta, Ajay, Maass, Wolfgang
A Boltzmann machine ([AHS], [HS], [AK]) is a neural network model in which the units update their states according to a stochastic decision rule. It consists of a set U of units, a set C of unordered pairs of elements of U, and an assignment of connection strengths S: C -- R. A configuration of a Boltzmann machine is a map k: U -- {O, I}.
A Method for the Efficient Design of Boltzmann Machines for Classiffication Problems
Gupta, Ajay, Maass, Wolfgang
A Boltzmann machine ([AHS], [HS], [AK]) is a neural network model in which the units update their states according to a stochastic decision rule. It consists of a set U of units, a set C of unordered pairs of elements of U, and an assignment of connection strengths S: C -- R. A configuration of a Boltzmann machine is a map k: U -- {O, I}.