Not enough data to create a plot.
Try a different view from the menu above.
Ma, Yunpu
Supposedly Equivalent Facts That Aren't? Entity Frequency in Pre-training Induces Asymmetry in LLMs
He, Yuan, He, Bailan, Ding, Zifeng, Lupidi, Alisia, Zhu, Yuqicheng, Chen, Shuo, Zhang, Caiqi, Chen, Jiaoyan, Ma, Yunpu, Tresp, Volker, Horrocks, Ian
Understanding and mitigating hallucinations in Large Language Models (LLMs) is crucial for ensuring reliable content generation. While previous research has primarily focused on "when" LLMs hallucinate, our work explains "why" and directly links model behaviour to the pre-training data that forms their prior knowledge. Specifically, we demonstrate that an asymmetry exists in the recognition of logically equivalent facts, which can be attributed to frequency discrepancies of entities appearing as subjects versus objects. Given that most pre-training datasets are inaccessible, we leverage the fully open-source OLMo series by indexing its Dolma dataset to estimate entity frequencies. Using relational facts (represented as triples) from Wikidata5M, we construct probing datasets to isolate this effect. Our experiments reveal that facts with a high-frequency subject and a low-frequency object are better recognised than their inverse, despite their logical equivalence. The pattern reverses in low-to-high frequency settings, and no statistically significant asymmetry emerges when both entities are high-frequency. These findings highlight the influential role of pre-training data in shaping model predictions and provide insights for inferring the characteristics of pre-training data in closed or partially closed LLMs.
PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection
Bi, Jinhe, Wang, Yifan, Yan, Danqi, Xiao, Xun, Hecker, Artur, Tresp, Volker, Ma, Yunpu
Visual instruction tuning refines pre-trained Multimodal Large Language Models (MLLMs) to enhance their real-world task performance. However, the rapid expansion of visual instruction datasets introduces significant data redundancy, leading to excessive computational costs. Existing data selection methods predominantly rely on proxy models or loss-based metrics, both of which impose substantial computational overheads due to the necessity of model inference and backpropagation. To address this challenge, we propose PRISM, a novel training-free approach for efficient multimodal data selection. Unlike existing methods, PRISM eliminates the reliance on proxy models, warm-up pretraining, and gradient-based optimization. Instead, it leverages Pearson correlation analysis to quantify the intrinsic visual encoding properties of MLLMs, computing a task-specific correlation score to identify high-value instances. This not only enbles data-efficient selection,but maintains the original performance. Empirical evaluations across multiple MLLMs demonstrate that PRISM reduces the overall time required for visual instruction tuning and data selection to just 30% of conventional methods, while surpassing fully fine-tuned models across eight multimodal and three language understanding benchmarks, achieving a 101.7% relative improvement in final performance.
LLaVA Steering: Visual Instruction Tuning with 500x Fewer Parameters through Modality Linear Representation-Steering
Bi, Jinhe, Wang, Yujun, Chen, Haokun, Xiao, Xun, Hecker, Artur, Tresp, Volker, Ma, Yunpu
Multimodal Large Language Models (MLLMs) have significantly advanced visual tasks by integrating visual representations into large language models (LLMs). The textual modality, inherited from LLMs, equips MLLMs with abilities like instruction following and in-context learning. In contrast, the visual modality enhances performance in downstream tasks by leveraging rich semantic content, spatial information, and grounding capabilities. These intrinsic modalities work synergistically across various visual tasks. Our research initially reveals a persistent imbalance between these modalities, with text often dominating output generation during visual instruction tuning. This imbalance occurs when using both full fine-tuning and parameter-efficient fine-tuning (PEFT) methods. We then found that re-balancing these modalities can significantly reduce the number of trainable parameters required, inspiring a direction for further optimizing visual instruction tuning. We introduce Modality Linear Representation-Steering (MoReS) to achieve the goal. MoReS effectively re-balances the intrinsic modalities throughout the model, where the key idea is to steer visual representations through linear transformations in the visual subspace across each model layer. To validate our solution, we composed LLaVA Steering, a suite of models integrated with the proposed MoReS method. Evaluation results show that the composed LLaVA Steering models require, on average, 500 times fewer trainable parameters than LoRA needs while still achieving comparable performance across three visual benchmarks and eight visual question-answering tasks. Last, we present the LLaVA Steering Factory, an in-house developed platform that enables researchers to quickly customize various MLLMs with component-based architecture for seamlessly integrating state-of-the-art models, and evaluate their intrinsic modality imbalance.
PERFT: Parameter-Efficient Routed Fine-Tuning for Mixture-of-Expert Model
Liu, Yilun, Ma, Yunpu, Chen, Shuo, Ding, Zifeng, He, Bailan, Han, Zhen, Tresp, Volker
The Mixture-of-Experts (MoE) paradigm has emerged as a powerful approach for scaling transformers with improved resource utilization. However, efficiently fine-tuning MoE models remains largely underexplored. Inspired by recent works on Parameter-Efficient Fine-Tuning (PEFT), we present a unified framework for integrating PEFT modules directly into the MoE mechanism. Aligning with the core principles and architecture of MoE, our framework encompasses a set of design dimensions including various functional and composition strategies. By combining design choices within our framework, we introduce Parameter-Efficient Routed Fine-Tuning (PERFT) as a flexible and scalable family of PEFT strategies tailored for MoE models. Extensive experiments on adapting OLMoE-1B-7B and Mixtral-8$\times$7B for commonsense and arithmetic reasoning tasks demonstrate the effectiveness, scalability, and intriguing dynamics of PERFT. Additionally, we provide empirical findings for each specific design choice to facilitate better application of MoE and PEFT.
Quantum Architecture Search with Unsupervised Representation Learning
Sun, Yize, Wu, Zixin, Ma, Yunpu, Tresp, Volker
Utilizing unsupervised representation learning for quantum architecture search (QAS) represents a cutting-edge approach poised to realize potential quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) devices. QAS is a scheme to design quantum circuits for variational quantum algorithms (VQAs). Most QAS algorithms combine their search space and search algorithms together and thus generally require evaluating a large number of quantum circuits during the search process, which results in formidable computational demands and limits their applications to large-scale quantum circuits. Predictor-based QAS algorithms can alleviate this problem by directly estimating the performance of circuits according to their structures. However, a high-performance predictor generally requires very time-consuming labeling to obtain a large number of labeled quantum circuits because the gate parameters of quantum circuits need to be optimized until convergence to their ground-truth performances. Recently, a classical neural architecture search algorithm Arch2vec inspires us by showing that architecture search can benefit from decoupling unsupervised representation learning from the search process. Whether unsupervised representation learning can help QAS without any predictor is still an open topic. In this work, we propose a framework QAS with unsupervised representation learning and visualize how unsupervised architecture representation learning encourages quantum circuit architectures with similar connections and operators to cluster together. Specifically, our framework enables the process of QAS to be decoupled from unsupervised architecture representation learning so that the learned representation can be directly applied to different downstream applications. Furthermore, our framework is predictor-free eliminating the need for a large number of labeled quantum circuits.
Benchmarking Robustness of Adaptation Methods on Pre-trained Vision-Language Models
Chen, Shuo, Gu, Jindong, Han, Zhen, Ma, Yunpu, Torr, Philip, Tresp, Volker
Various adaptation methods, such as LoRA, prompts, and adapters, have been proposed to enhance the performance of pre-trained vision-language models in specific domains. The robustness of these adaptation methods against distribution shifts have not been studied. In this study, we assess the robustness of 11 widely-used adaptation methods across 4 vision-language datasets under multimodal corruptions. Concretely, we introduce 7 benchmark datasets, including 96 visual and 87 textual corruptions, to investigate the robustness of different adaptation methods, the impact of available adaptation examples, and the influence of trainable parameter size during adaptation. Our analysis reveals that: 1) Adaptation methods are more sensitive to text corruptions than visual corruptions. 2) Full fine-tuning does not consistently provide the highest robustness; instead, adapters can achieve better robustness with comparable clean performance. 3) Contrary to expectations, our findings indicate that increasing the number of adaptation data and parameters does not guarantee enhanced robustness; instead it results in even lower robustness. We hope this study could benefit future research in the development of robust multimodal adaptation methods. The benchmark, code, and dataset used in this study can be accessed at https://adarobustness.github.io .
Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models
Ding, Zifeng, Cai, Heling, Wu, Jingpei, Ma, Yunpu, Liao, Ruotong, Xiong, Bo, Tresp, Volker
In recent years, modeling evolving knowledge over temporal knowledge graphs (TKGs) has become a heated topic. Various methods have been proposed to forecast links on TKGs. Most of them are embedding-based, where hidden representations are learned to represent knowledge graph (KG) entities and relations based on the observed graph contexts. Although these methods show strong performance on traditional TKG forecasting (TKGF) benchmarks, they naturally face a strong challenge when they are asked to model the unseen zero-shot relations that has no prior graph context. In this paper, we try to mitigate this problem as follows. We first input the text descriptions of KG relations into large language models (LLMs) for generating relation representations, and then introduce them into embedding-based TKGF methods. LLM-empowered representations can capture the semantic information in the relation descriptions. This makes the relations, whether seen or unseen, with similar semantic meanings stay close in the embedding space, enabling TKGF models to recognize zero-shot relations even without any observed graph context. Experimental results show that our approach helps TKGF models to achieve much better performance in forecasting the facts with previously unseen relations, while still maintaining their ability in link forecasting regarding seen relations.
GenTKG: Generative Forecasting on Temporal Knowledge Graph
Liao, Ruotong, Jia, Xu, Ma, Yunpu, Tresp, Volker
The rapid advancements in large language models (LLMs) have ignited interest in the temporal knowledge graph (tKG) domain, where conventional carefully designed embedding-based and rule-based models dominate. The question remains open of whether pre-trained LLMs can understand structured temporal relational data and replace them as the foundation model for temporal relational forecasting. Therefore, we bring temporal knowledge forecasting into the generative setting. However, challenges occur in the huge chasms between complex temporal graph data structure and sequential natural expressions LLMs can handle, and between the enormous data sizes of tKGs and heavy computation costs of finetuning LLMs. To address these challenges, we propose a novel retrieval augmented generation framework that performs generative forecasting on tKGs named GenTKG, which combines a temporal logical rule-based retrieval strategy and lightweight parameter-efficient instruction tuning. Extensive experiments have shown that GenTKG outperforms conventional methods of temporal relational forecasting under low computation resources. GenTKG also highlights remarkable transferability with exceeding performance on unseen datasets without re-training. Our work reveals the huge potential of LLMs in the tKG domain and opens a new frontier for generative forecasting on tKGs.
GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language Models
Shen, Yuanchun, Liao, Ruotong, Han, Zhen, Ma, Yunpu, Tresp, Volker
While multi-modal models have successfully integrated information from image, video, and audio modalities, integrating graph modality into large language models (LLMs) remains unexplored. This discrepancy largely stems from the inherent divergence between structured graph data and unstructured text data. Incorporating graph knowledge provides a reliable source of information, enabling potential solutions to address issues in text generation, e.g., hallucination, and lack of domain knowledge. To evaluate the integration of graph knowledge into language models, a dedicated dataset is needed. However, there is currently no benchmark dataset specifically designed for multimodal graph-language models. To address this gap, we propose GraphextQA, a question answering dataset with paired subgraphs, retrieved from Wikidata, to facilitate the evaluation and future development of graph-language models. Additionally, we introduce a baseline model called CrossGNN, which conditions answer generation on the paired graphs by cross-attending question-aware graph features at decoding. The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation. We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.
Differentiable Quantum Architecture Search for Quantum Reinforcement Learning
Sun, Yize, Ma, Yunpu, Tresp, Volker
Differentiable quantum architecture search (DQAS) is a gradient-based framework to design quantum circuits automatically in the NISQ era. It was motivated by such as low fidelity of quantum hardware, low flexibility of circuit architecture, high circuit design cost, barren plateau (BP) problem, and periodicity of weights. People used it to address error mitigation, unitary decomposition, and quantum approximation optimization problems based on fixed datasets. Quantum reinforcement learning (QRL) is a part of quantum machine learning and often has various data. QRL usually uses a manually designed circuit. However, the pre-defined circuit needs more flexibility for different tasks, and the circuit design based on various datasets could become intractable in the case of a large circuit. The problem of whether DQAS can be applied to quantum deep Q-learning with various datasets is still open. The main target of this work is to discover the capability of DQAS to solve quantum deep Q-learning problems. We apply a gradient-based framework DQAS on reinforcement learning tasks and evaluate it in two different environments - cart pole and frozen lake. It contains input- and output weights, progressive search, and other new features. The experiments conclude that DQAS can design quantum circuits automatically and efficiently. The evaluation results show significant outperformance compared to the manually designed circuit. Furthermore, the performance of the automatically created circuit depends on whether the super-circuit learned well during the training process. This work is the first to show that gradient-based quantum architecture search is applicable to QRL tasks.