Ma, Xiaoxing
Proving Olympiad Inequalities by Synergizing LLMs and Symbolic Reasoning
Li, Zenan, Li, Zhaoyu, Tang, Wen, Zhang, Xian, Yao, Yuan, Si, Xujie, Yang, Fan, Yang, Kaiyu, Ma, Xiaoxing
Large language models (LLMs) can prove mathematical theorems formally by generating proof steps (\textit{a.k.a.} tactics) within a proof system. However, the space of possible tactics is vast and complex, while the available training data for formal proofs is limited, posing a significant challenge to LLM-based tactic generation. To address this, we introduce a neuro-symbolic tactic generator that synergizes the mathematical intuition learned by LLMs with domain-specific insights encoded by symbolic methods. The key aspect of this integration is identifying which parts of mathematical reasoning are best suited to LLMs and which to symbolic methods. While the high-level idea of neuro-symbolic integration is broadly applicable to various mathematical problems, in this paper, we focus specifically on Olympiad inequalities (Figure~1). We analyze how humans solve these problems and distill the techniques into two types of tactics: (1) scaling, handled by symbolic methods, and (2) rewriting, handled by LLMs. In addition, we combine symbolic tools with LLMs to prune and rank the proof goals for efficient proof search. We evaluate our framework on 161 challenging inequalities from multiple mathematics competitions, achieving state-of-the-art performance and significantly outperforming existing LLM and symbolic approaches without requiring additional training data.
Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning
Zhou, Zhi, Yuhao, Tan, Li, Zenan, Yao, Yuan, Guo, Lan-Zhe, Ma, Xiaoxing, Li, Yu-Feng
Recent advancements in large language models (LLMs) have demonstrated remarkable reasoning capabilities. However, single-shot inference often yields unreliable results for complex reasoning tasks, leading researchers to explore multiple reasoning paths through methods such as perplexity and self-consistency. In this paper, we present the first theoretical error decomposition analysis of these techniques, breaking down their error into estimation error and model error. Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function, while self-consistency exhibits high estimation error due to a slow error convergence rate. To overcome these limitations, we propose Reasoning-Pruning Perplexity Consistency (RPC). This approach combines Perplexity Consistency, which seamlessly integrates LLM perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths to effectively prevent the degeneration of estimation error reduction. Theoretical analysis demonstrates that RPC not only accelerates the convergence rate of estimation error to an exponential level but also holds strong potential for further reducing model error. Extensive empirical evaluations on seven benchmark datasets confirm that RPC can significantly improve reasoning performance, sample efficiency, and confidence reliability.
Autoformalize Mathematical Statements by Symbolic Equivalence and Semantic Consistency
Li, Zenan, Wu, Yifan, Li, Zhaoyu, Wei, Xinming, Zhang, Xian, Yang, Fan, Ma, Xiaoxing
Autoformalization, the task of automatically translating natural language descriptions into a formal language, poses a significant challenge across various domains, especially in mathematics. Recent advancements in large language models (LLMs) have unveiled their promising capabilities to formalize even competition-level math problems. However, we observe a considerable discrepancy between pass@1 and pass@k accuracies in LLM-generated formalizations. To address this gap, we introduce a novel framework that scores and selects the best result from k autoformalization candidates based on two complementary self-consistency methods: symbolic equivalence and semantic consistency. Elaborately, symbolic equivalence identifies the logical homogeneity among autoformalization candidates using automated theorem provers, and semantic consistency evaluates the preservation of the original meaning by informalizing the candidates and computing the similarity between the embeddings of the original and informalized texts. Our extensive experiments on the MATH and miniF2F datasets demonstrate that our approach significantly enhances autoformalization accuracy, achieving up to 0.22-1.35x
Neuro-Symbolic Data Generation for Math Reasoning
Li, Zenan, Zhou, Zhi, Yao, Yuan, Li, Yu-Feng, Cao, Chun, Yang, Fan, Zhang, Xian, Ma, Xiaoxing
A critical question about Large Language Models (LLMs) is whether their apparent deficiency in mathematical reasoning is inherent, or merely a result of insufficient exposure to high-quality mathematical data. To explore this, we developed an automated method for generating high-quality, supervised mathematical datasets. The method carefully mutates existing math problems, ensuring both diversity and validity of the newly generated problems. This is achieved by a neuro-symbolic data generation framework combining the intuitive informalization strengths of LLMs, and the precise symbolic reasoning of math solvers along with projected Markov chain Monte Carlo sampling in the highly-irregular symbolic space. Empirical experiments demonstrate the high quality of data generated by the proposed method, and that the LLMs, specifically LLaMA-2 and Mistral, when realigned with the generated data, surpass their state-of-the-art counterparts.
Neuro-symbolic Learning Yielding Logical Constraints
Li, Zenan, Huang, Yunpeng, Li, Zhaoyu, Yao, Yuan, Xu, Jingwei, Chen, Taolue, Ma, Xiaoxing, Lu, Jian
Neuro-symbolic systems combine the abilities of neural perception and logical reasoning. However, end-to-end learning of neuro-symbolic systems is still an unsolved challenge. This paper proposes a natural framework that fuses neural network training, symbol grounding, and logical constraint synthesis into a coherent and efficient end-to-end learning process. The capability of this framework comes from the improved interactions between the neural and the symbolic parts of the system in both the training and inference stages. Technically, to bridge the gap between the continuous neural network and the discrete logical constraint, we introduce a difference-of-convex programming technique to relax the logical constraints while maintaining their precision. We also employ cardinality constraints as the language for logical constraint learning and incorporate a trust region method to avoid the degeneracy of logical constraint in learning. Both theoretical analyses and empirical evaluations substantiate the effectiveness of the proposed framework.
LASER: Script Execution by Autonomous Agents for On-demand Traffic Simulation
Gao, Hao, Wang, Jingyue, Fang, Wenyang, Xu, Jingwei, Huang, Yunpeng, Chen, Taolue, Ma, Xiaoxing
Autonomous Driving Systems (ADS) require diverse and safety-critical traffic scenarios for effective training and testing, but the existing data generation methods struggle to provide flexibility and scalability. We propose LASER, a novel framework that leverage large language models (LLMs) to conduct traffic simulations based on natural language inputs. The framework operates in two stages: it first generates scripts from user-provided descriptions and then executes them using autonomous agents in real time. Validated in the CARLA simulator, LASER successfully generates complex, on-demand driving scenarios, significantly improving ADS training and testing data generation. To make a great film, you need three things-the script, the script and the script.
Learning with Logical Constraints but without Shortcut Satisfaction
Li, Zenan, Liu, Zehua, Yao, Yuan, Xu, Jingwei, Chen, Taolue, Ma, Xiaoxing, Lรผ, Jian
Recent studies in neuro-symbolic learning have explored the integration of logical knowledge into deep learning via encoding logical constraints as an additional loss function. However, existing approaches tend to vacuously satisfy logical constraints through shortcuts, failing to fully exploit the knowledge. In this paper, we present a new framework for learning with logical constraints. Specifically, we address the shortcut satisfaction issue by introducing dual variables for logical connectives, encoding how the constraint is satisfied. We further propose a variational framework where the encoded logical constraint is expressed as a distributional loss that is compatible with the model's original training loss. The theoretical analysis shows that the proposed approach bears salient properties, and the experimental evaluations demonstrate its superior performance in both model generalizability and constraint satisfaction.
Softened Symbol Grounding for Neuro-symbolic Systems
Li, Zenan, Yao, Yuan, Chen, Taolue, Xu, Jingwei, Cao, Chun, Ma, Xiaoxing, Lรผ, Jian
Neuro-symbolic learning generally consists of two separated worlds, i.e., neural network training and symbolic constraint solving, whose success hinges on symbol grounding, a fundamental problem in AI. This paper presents a novel, softened symbol grounding process, bridging the gap between the two worlds, and resulting in an effective and efficient neuro-symbolic learning framework. Technically, the framework features (1) modeling of symbol solution states as a Boltzmann distribution, which avoids expensive state searching and facilitates mutually beneficial interactions between network training and symbolic reasoning;(2) a new MCMC technique leveraging projection and SMT solvers, which efficiently samples from disconnected symbol solution spaces; (3) an annealing mechanism that can escape from %being trapped into sub-optimal symbol groundings. Experiments with three representative neuro symbolic learning tasks demonstrate that, owining to its superior symbol grounding capability, our framework successfully solves problems well beyond the frontier of the existing proposals.
Securing Reliability: A Brief Overview on Enhancing In-Context Learning for Foundation Models
Huang, Yunpeng, Gu, Yaonan, Xu, Jingwei, Zhu, Zhihong, Chen, Zhaorun, Ma, Xiaoxing
As foundation models (FMs) continue to shape the landscape of AI, the in-context learning (ICL) paradigm thrives but also encounters issues such as toxicity, hallucination, disparity, adversarial vulnerability, and inconsistency. Ensuring the reliability and responsibility of FMs is crucial for the sustainable development of the AI ecosystem. In this concise overview, we investigate recent advancements in enhancing the reliability and trustworthiness of FMs within ICL frameworks, focusing on four key methodologies, each with its corresponding subgoals. We sincerely hope this paper can provide valuable insights for researchers and practitioners endeavoring to build safe and dependable FMs and foster a stable and consistent ICL environment, thereby unlocking their vast potential.
Advancing Transformer Architecture in Long-Context Large Language Models: A Comprehensive Survey
Huang, Yunpeng, Xu, Jingwei, Jiang, Zixu, Lai, Junyu, Li, Zenan, Yao, Yuan, Chen, Taolue, Yang, Lijuan, Xin, Zhou, Ma, Xiaoxing
With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at https://github.com/Strivin0311/long-llms-learning.