Ma, Xiaolei
Learning dynamic and hierarchical traffic spatiotemporal features with Transformer
Yan, Haoyang, Ma, Xiaolei
Traffic forecasting is an indispensable part of Intelligent transportation systems (ITS), and long-term network-wide accurate traffic speed forecasting is one of the most challenging tasks. Recently, deep learning methods have become popular in this domain. As traffic data are physically associated with road networks, most proposed models treat it as a spatiotemporal graph modeling problem and use Graph Convolution Network (GCN) based methods. These GCN-based models highly depend on a predefined and fixed adjacent matrix to reflect the spatial dependency. However, the predefined fixed adjacent matrix is limited in reflecting the actual dependence of traffic flow. This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting to overcome these limitations. Transformer is the most popular framework in Natural Language Processing (NLP). And by adapting it to the spatiotemporal problem, Traffic Transformer hierarchically extracts spatiotemporal features through data dynamically by multi-head attention and masked multi-head attention mechanism, and fuse these features for traffic forecasting. Furthermore, analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better. Experimental results on the public traffic network datasets and real-world traffic network datasets generated by ourselves demonstrate our proposed model achieves better performance than the state-of-the-art ones.
Forecasting Transportation Network Speed Using Deep Capsule Networks with Nested LSTM Models
Ma, Xiaolei, Li, Yi, Cui, Zhiyong, Wang, Yinhai
Accurate and reliable traffic forecasting for complicated transportation networks is of vital importance to modern transportation management. The complicated spatial dependencies of roadway links and the dynamic temporal patterns of traffic states make it particularly challenging. To address these challenges, we propose a new capsule network (CapsNet) to extract the spatial features of traffic networks and utilize a nested LSTM (NLSTM) structure to capture the hierarchical temporal dependencies in traffic sequence data. A framework for network-level traffic forecasting is also proposed by sequentially connecting CapsNet and NLSTM. On the basis of literature review, our study is the first to adopt CapsNet and NLSTM in the field of traffic forecasting. An experiment on a Beijing transportation network with 278 links shows that the proposed framework with the capability of capturing complicated spatiotemporal traffic patterns outperforms multiple state-of-the-art traffic forecasting baseline models. The superiority and feasibility of CapsNet and NLSTM are also demonstrated, respectively, by visualizing and quantitatively evaluating the experimental results.
Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
Ma, Xiaolei, Dai, Zhuang, He, Zhengbing, Na, Jihui, Wang, Yong, Wang, Yunpeng
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.