Ma, Wing-Kin
Downlink MIMO Channel Estimation from Bits: Recoverability and Algorithm
Shrestha, Rajesh, Shao, Mingjie, Hong, Mingyi, Ma, Wing-Kin, Fu, Xiao
In frequency division duplex (FDD) massive MIMO systems, a major challenge lies in acquiring the downlink channel state information}\ (CSI) at the base station (BS) from limited feedback sent by the user equipment (UE). To tackle this fundamental task, our contribution is twofold: First, a simple feedback framework is proposed, where a compression and Gaussian dithering-based quantization strategy is adopted at the UE side, and then a maximum likelihood estimator (MLE) is formulated at the BS side. Recoverability of the MIMO channel under the widely used double directional model is established. Specifically, analyses are presented for two compression schemes -- showing one being more overhead-economical and the other computationally lighter at the UE side. Second, to realize the MLE, an alternating direction method of multipliers (ADMM) algorithm is proposed. The algorithm is carefully designed to integrate a sophisticated harmonic retrieval (HR) solver as subroutine, which turns out to be the key of effectively tackling this hard MLE problem.Extensive numerical experiments are conducted to validate the efficacy of our approach.
Probabilistic Simplex Component Analysis
Wu, Ruiyuan, Ma, Wing-Kin, Li, Yuening, So, Anthony Man-Cho, Sidiropoulos, Nicholas D.
This study presents PRISM, a probabilistic simplex component analysis approach to identifying the vertices of a data-circumscribing simplex from data. The problem has a rich variety of applications, the most notable being hyperspectral unmixing in remote sensing and non-negative matrix factorization in machine learning. PRISM uses a simple probabilistic model, namely, uniform simplex data distribution and additive Gaussian noise, and it carries out inference by maximum likelihood. The inference model is sound in the sense that the vertices are provably identifiable under some assumptions, and it suggests that PRISM can be effective in combating noise when the number of data points is large. PRISM has strong, but hidden, relationships with simplex volume minimization, a powerful geometric approach for the same problem. We study these fundamental aspects, and we also consider algorithmic schemes based on importance sampling and variational inference. In particular, the variational inference scheme is shown to resemble a matrix factorization problem with a special regularizer, which draws an interesting connection to the matrix factorization approach. Numerical results are provided to demonstrate the potential of PRISM.
Understanding Notions of Stationarity in Non-Smooth Optimization
Li, Jiajin, So, Anthony Man-Cho, Ma, Wing-Kin
Many contemporary applications in signal processing and machine learning give rise to structured non-convex non-smooth optimization problems that can often be tackled by simple iterative methods quite effectively. One of the keys to understanding such a phenomenon---and, in fact, one of the very difficult conundrums even for experts---lie in the study of "stationary points" of the problem in question. Unlike smooth optimization, for which the definition of a stationary point is rather standard, there is a myriad of definitions of stationarity in non-smooth optimization. In this article, we give an introduction to different stationarity concepts for several important classes of non-convex non-smooth functions and discuss the geometric interpretations and further clarify the relationship among these different concepts. We then demonstrate the relevance of these constructions in some representative applications and how they could affect the performance of iterative methods for tackling these applications.
Nonnegative Matrix Factorization for Signal and Data Analytics: Identifiability, Algorithms, and Applications
Fu, Xiao, Huang, Kejun, Sidiropoulos, Nicholas D., Ma, Wing-Kin
Nonnegative matrix factorization (NMF) has become a workhorse for signal and data analytics, triggered by its model parsimony and interpretability. Perhaps a bit surprisingly, the understanding to its model identifiability---the major reason behind the interpretability in many applications such as topic mining and hyperspectral imaging---had been rather limited until recent years. Beginning from the 2010s, the identifiability research of NMF has progressed considerably: Many interesting and important results have been discovered by the signal processing (SP) and machine learning (ML) communities. NMF identifiability has a great impact on many aspects in practice, such as ill-posed formulation avoidance and performance-guaranteed algorithm design. On the other hand, there is no tutorial paper that introduces NMF from an identifiability viewpoint. In this paper, we aim at filling this gap by offering a comprehensive and deep tutorial on model identifiability of NMF as well as the connections to algorithms and applications. This tutorial will help researchers and graduate students grasp the essence and insights of NMF, thereby avoiding typical `pitfalls' that are often times due to unidentifiable NMF formulations. This paper will also help practitioners pick/design suitable factorization tools for their own problems.
Maximum Volume Inscribed Ellipsoid: A New Simplex-Structured Matrix Factorization Framework via Facet Enumeration and Convex Optimization
Lin, Chia-Hsiang, Wu, Ruiyuan, Ma, Wing-Kin, Chi, Chong-Yung, Wang, Yue
Consider a structured matrix factorization model where one factor is restricted to have its columns lying in the unit simplex. This simplex-structured matrix factorization (SSMF) model and the associated factorization techniques have spurred much interest in research topics over different areas, such as hyperspectral unmixing in remote sensing, topic discovery in machine learning, to name a few. In this paper we develop a new theoretical SSMF framework whose idea is to study a maximum volume ellipsoid inscribed in the convex hull of the data points. This maximum volume inscribed ellipsoid (MVIE) idea has not been attempted in prior literature, and we show a sufficient condition under which the MVIE framework guarantees exact recovery of the factors. The sufficient recovery condition we show for MVIE is much more relaxed than that of separable non-negative matrix factorization (or pure-pixel search); coincidentally it is also identical to that of minimum volume enclosing simplex, which is known to be a powerful SSMF framework for non-separable problem instances. We also show that MVIE can be practically implemented by performing facet enumeration and then by solving a convex optimization problem. The potential of the MVIE framework is illustrated by numerical results.
Robust Volume Minimization-Based Matrix Factorization for Remote Sensing and Document Clustering
Fu, Xiao, Huang, Kejun, Yang, Bo, Ma, Wing-Kin, Sidiropoulos, Nicholas D.
This paper considers \emph{volume minimization} (VolMin)-based structured matrix factorization (SMF). VolMin is a factorization criterion that decomposes a given data matrix into a basis matrix times a structured coefficient matrix via finding the minimum-volume simplex that encloses all the columns of the data matrix. Recent work showed that VolMin guarantees the identifiability of the factor matrices under mild conditions that are realistic in a wide variety of applications. This paper focuses on both theoretical and practical aspects of VolMin. On the theory side, exact equivalence of two independently developed sufficient conditions for VolMin identifiability is proven here, thereby providing a more comprehensive understanding of this aspect of VolMin. On the algorithm side, computational complexity and sensitivity to outliers are two key challenges associated with real-world applications of VolMin. These are addressed here via a new VolMin algorithm that handles volume regularization in a computationally simple way, and automatically detects and {iteratively downweights} outliers, simultaneously. Simulations and real-data experiments using a remotely sensed hyperspectral image and the Reuters document corpus are employed to showcase the effectiveness of the proposed algorithm.
Joint Tensor Factorization and Outlying Slab Suppression with Applications
Fu, Xiao, Huang, Kejun, Ma, Wing-Kin, Sidiropoulos, Nicholas D., Bro, Rasmus
We consider factoring low-rank tensors in the presence of outlying slabs. This problem is important in practice, because data collected in many real-world applications, such as speech, fluorescence, and some social network data, fit this paradigm. Prior work tackles this problem by iteratively selecting a fixed number of slabs and fitting, a procedure which may not converge. We formulate this problem from a group-sparsity promoting point of view, and propose an alternating optimization framework to handle the corresponding $\ell_p$ ($0
Semiblind Hyperspectral Unmixing in the Presence of Spectral Library Mismatches
Fu, Xiao, Ma, Wing-Kin, Bioucas-Dias, José, Chan, Tsung-Han
The dictionary-aided sparse regression (SR) approach has recently emerged as a promising alternative to hyperspectral unmixing (HU) in remote sensing. By using an available spectral library as a dictionary, the SR approach identifies the underlying materials in a given hyperspectral image by selecting a small subset of spectral samples in the dictionary to represent the whole image. A drawback with the current SR developments is that an actual spectral signature in the scene is often assumed to have zero mismatch with its corresponding dictionary sample, and such an assumption is considered too ideal in practice. In this paper, we tackle the spectral signature mismatch problem by proposing a dictionary-adjusted nonconvex sparsity-encouraging regression (DANSER) framework. The main idea is to incorporate dictionary correcting variables in an SR formulation. A simple and low per-iteration complexity algorithm is tailor-designed for practical realization of DANSER. Using the same dictionary correcting idea, we also propose a robust subspace solution for dictionary pruning. Extensive simulations and real-data experiments show that the proposed method is effective in mitigating the undesirable spectral signature mismatch effects.
Self-Dictionary Sparse Regression for Hyperspectral Unmixing: Greedy Pursuit and Pure Pixel Search are Related
Fu, Xiao, Ma, Wing-Kin, Chan, Tsung-Han, Bioucas-Dias, José M.
This paper considers a recently emerged hyperspectral unmixing formulation based on sparse regression of a self-dictionary multiple measurement vector (SD-MMV) model, wherein the measured hyperspectral pixels are used as the dictionary. Operating under the pure pixel assumption, this SD-MMV formalism is special in that it allows simultaneous identification of the endmember spectral signatures and the number of endmembers. Previous SD-MMV studies mainly focus on convex relaxations. In this study, we explore the alternative of greedy pursuit, which generally provides efficient and simple algorithms. In particular, we design a greedy SD-MMV algorithm using simultaneous orthogonal matching pursuit. Intriguingly, the proposed greedy algorithm is shown to be closely related to some existing pure pixel search algorithms, especially, the successive projection algorithm (SPA). Thus, a link between SD-MMV and pure pixel search is revealed. We then perform exact recovery analyses, and prove that the proposed greedy algorithm is robust to noise---including its identification of the (unknown) number of endmembers---under a sufficiently low noise level. The identification performance of the proposed greedy algorithm is demonstrated through both synthetic and real-data experiments.
Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No Pure-Pixel Case
Lin, Chia-Hsiang, Ma, Wing-Kin, Li, Wei-Chiang, Chi, Chong-Yung, Ambikapathi, ArulMurugan
In blind hyperspectral unmixing (HU), the pure-pixel assumption is well-known to be powerful in enabling simple and effective blind HU solutions. However, the pure-pixel assumption is not always satisfied in an exact sense, especially for scenarios where pixels are heavily mixed. In the no pure-pixel case, a good blind HU approach to consider is the minimum volume enclosing simplex (MVES). Empirical experience has suggested that MVES algorithms can perform well without pure pixels, although it was not totally clear why this is true from a theoretical viewpoint. This paper aims to address the latter issue. We develop an analysis framework wherein the perfect endmember identifiability of MVES is studied under the noiseless case. We prove that MVES is indeed robust against lack of pure pixels, as long as the pixels do not get too heavily mixed and too asymmetrically spread. The theoretical results are verified by numerical simulations.