Ma, Weizhi
StepTool: A Step-grained Reinforcement Learning Framework for Tool Learning in LLMs
Yu, Yuanqing, Wang, Zhefan, Ma, Weizhi, Guo, Zhicheng, Zhan, Jingtao, Wang, Shuai, Wu, Chuhan, Guo, Zhiqiang, Zhang, Min
Despite having powerful reasoning and inference capabilities, Large Language Models (LLMs) still need external tools to acquire real-time information retrieval or domain-specific expertise to solve complex tasks, which is referred to as tool learning. Existing tool learning methods primarily rely on tuning with expert trajectories, focusing on token-sequence learning from a linguistic perspective. However, there are several challenges: 1) imitating static trajectories limits their ability to generalize to new tasks. 2) even expert trajectories can be suboptimal, and better solution paths may exist. In this work, we introduce StepTool, a novel step-grained reinforcement learning framework to improve tool learning in LLMs. It consists of two components: Step-grained Reward Shaping, which assigns rewards at each tool interaction based on tool invocation success and its contribution to the task, and Step-grained Optimization, which uses policy gradient methods to optimize the model in a multi-step manner. Experimental results demonstrate that StepTool significantly outperforms existing methods in multi-step, tool-based tasks, providing a robust solution for complex task environments. Codes are available at https://github.com/yuyq18/StepTool.
Long Term Memory: The Foundation of AI Self-Evolution
Jiang, Xun, Li, Feng, Zhao, Han, Wang, Jiaying, Shao, Jun, Xu, Shihao, Zhang, Shu, Chen, Weiling, Tang, Xavier, Chen, Yize, Wu, Mengyue, Ma, Weizhi, Wang, Mengdi, Chen, Tianqiao
Large language models (LLMs) like GPTs, trained on vast datasets, have demonstrated impressive capabilities in language understanding, reasoning, and planning, achieving human-level performance in various tasks. Most studies focus on enhancing these models by training on ever-larger datasets to build more powerful foundation models. While training stronger models is important, enabling models to evolve during inference is equally crucial, a process we refer to as AI self-evolution. Unlike large-scale training, self-evolution may rely on limited data or interactions. Inspired by the columnar organization of the human cerebral cortex, we hypothesize that AI models could develop cognitive abilities and build internal representations through iterative interactions with their environment. To achieve this, models need long-term memory (LTM) to store and manage processed interaction data. LTM supports self-evolution by representing diverse experiences across environments and agents. In this report, we explore AI self-evolution and its potential to enhance models during inference. We examine LTM's role in lifelong learning, allowing models to evolve based on accumulated interactions. We outline the structure of LTM and the systems needed for effective data retention and representation. We also classify approaches for building personalized models with LTM data and show how these models achieve self-evolution through interaction. Using LTM, our multi-agent framework OMNE achieved first place on the GAIA benchmark, demonstrating LTM's potential for AI self-evolution. Finally, we present a roadmap for future research, emphasizing the importance of LTM for advancing AI technology and its practical applications.
Large Language Models as Evaluators for Recommendation Explanations
Zhang, Xiaoyu, Li, Yishan, Wang, Jiayin, Sun, Bowen, Ma, Weizhi, Sun, Peijie, Zhang, Min
The explainability of recommender systems has attracted significant attention in academia and industry. Many efforts have been made for explainable recommendations, yet evaluating the quality of the explanations remains a challenging and unresolved issue. In recent years, leveraging LLMs as evaluators presents a promising avenue in Natural Language Processing tasks (e.g., sentiment classification, information extraction), as they perform strong capabilities in instruction following and common-sense reasoning. However, evaluating recommendation explanatory texts is different from these NLG tasks, as its criteria are related to human perceptions and are usually subjective. In this paper, we investigate whether LLMs can serve as evaluators of recommendation explanations. To answer the question, we utilize real user feedback on explanations given from previous work and additionally collect third-party annotations and LLM evaluations. We design and apply a 3-level meta evaluation strategy to measure the correlation between evaluator labels and the ground truth provided by users. Our experiments reveal that LLMs, such as GPT4, can provide comparable evaluations with appropriate prompts and settings. We also provide further insights into combining human labels with the LLM evaluation process and utilizing ensembles of multiple heterogeneous LLM evaluators to enhance the accuracy and stability of evaluations. Our study verifies that utilizing LLMs as evaluators can be an accurate, reproducible and cost-effective solution for evaluating recommendation explanation texts. Our code is available at https://github.com/Xiaoyu-SZ/LLMasEvaluator.
EasyRL4Rec: An Easy-to-use Library for Reinforcement Learning Based Recommender Systems
Yu, Yuanqing, Gao, Chongming, Chen, Jiawei, Tang, Heng, Sun, Yuefeng, Chen, Qian, Ma, Weizhi, Zhang, Min
Reinforcement Learning (RL)-Based Recommender Systems (RSs) have gained rising attention for their potential to enhance long-term user engagement. However, research in this field faces challenges, including the lack of user-friendly frameworks, inconsistent evaluation metrics, and difficulties in reproducing existing studies. To tackle these issues, we introduce EasyRL4Rec, an easy-to-use code library designed specifically for RL-based RSs. This library provides lightweight and diverse RL environments based on five public datasets and includes core modules with rich options, simplifying model development. It provides unified evaluation standards focusing on long-term outcomes and offers tailored designs for state modeling and action representation for recommendation scenarios. Furthermore, we share our findings from insightful experiments with current methods. EasyRL4Rec seeks to facilitate the model development and experimental process in the domain of RL-based RSs. The library is available for public use.
Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
Li, Junkai, Wang, Siyu, Zhang, Meng, Li, Weitao, Lai, Yunghwei, Kang, Xinhui, Ma, Weizhi, Liu, Yang
In this paper, we introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness. All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs). Our central goal is to enable a doctor agent to learn how to treat illness within the simulacrum. To do so, we propose a method called MedAgent-Zero. As the simulacrum can simulate disease onset and progression based on knowledge bases and LLMs, doctor agents can keep accumulating experience from both successful and unsuccessful cases. Simulation experiments show that the treatment performance of doctor agents consistently improves on various tasks. More interestingly, the knowledge the doctor agents have acquired in Agent Hospital is applicable to real-world medicare benchmarks. After treating around ten thousand patients (real-world doctors may take over two years), the evolved doctor agent achieves a state-of-the-art accuracy of 93.06% on a subset of the MedQA dataset that covers major respiratory diseases. This work paves the way for advancing the applications of LLM-powered agent techniques in medical scenarios.
A User-Centric Benchmark for Evaluating Large Language Models
Wang, Jiayin, Mo, Fengran, Ma, Weizhi, Sun, Peijie, Zhang, Min, Nie, Jian-Yun
Large Language Models (LLMs) are essential tools to collaborate with users on different tasks. Evaluating their performance to serve users' needs in real-world scenarios is important. While many benchmarks have been created, they mainly focus on specific predefined model abilities. Few have covered the intended utilization of LLMs by real users. To address this oversight, we propose benchmarking LLMs from a user perspective in both dataset construction and evaluation designs. We first collect 1846 real-world use cases with 15 LLMs from a user study with 712 participants from 23 countries. These self-reported cases form the User Reported Scenarios(URS) dataset with a categorization of 7 user intents. Secondly, on this authentic multi-cultural dataset, we benchmark 10 LLM services on their efficacy in satisfying user needs. Thirdly, we show that our benchmark scores align well with user-reported experience in LLM interactions across diverse intents, both of which emphasize the overlook of subjective scenarios. In conclusion, our study proposes to benchmark LLMs from a user-centric perspective, aiming to facilitate evaluations that better reflect real user needs. The benchmark dataset and code are available at https://github.com/Alice1998/URS.
Citation-Enhanced Generation for LLM-based Chatbots
Li, Weitao, Li, Junkai, Ma, Weizhi, Liu, Yang
Large language models (LLMs) exhibit powerful general intelligence across diverse scenarios, including their integration into chatbots. However, a vital challenge of LLM-based chatbots is that they may produce hallucinated content in responses, which significantly limits their applicability. Various efforts have been made to alleviate hallucination, such as retrieval augmented generation and reinforcement learning with human feedback, but most of them require additional training and data annotation. In this paper, we propose a novel post-hoc Citation-Enhanced Generation (CEG) approach combined with retrieval argumentation. Unlike previous studies that focus on preventing hallucinations during generation, our method addresses this issue in a post-hoc way. It incorporates a retrieval module to search for supporting documents relevant to the generated content, and employs a natural language inference-based citation generation module. Once the statements in the generated content lack of reference, our model can regenerate responses until all statements are supported by citations. Note that our method is a training-free plug-and-play plugin that is capable of various LLMs. Experiments on various hallucination-related datasets show our framework outperforms state-of-the-art methods in both hallucination detection and response regeneration on three benchmarks. Our codes and dataset will be publicly available.
Intersectional Two-sided Fairness in Recommendation
Wang, Yifan, Sun, Peijie, Ma, Weizhi, Zhang, Min, Zhang, Yuan, Jiang, Peng, Ma, Shaoping
Fairness of recommender systems (RS) has attracted increasing attention recently. Based on the involved stakeholders, the fairness of RS can be divided into user fairness, item fairness, and two-sided fairness which considers both user and item fairness simultaneously. However, we argue that the intersectional two-sided unfairness may still exist even if the RS is two-sided fair, which is observed and shown by empirical studies on real-world data in this paper, and has not been well-studied previously. To mitigate this problem, we propose a novel approach called Intersectional Two-sided Fairness Recommendation (ITFR). Our method utilizes a sharpness-aware loss to perceive disadvantaged groups, and then uses collaborative loss balance to develop consistent distinguishing abilities for different intersectional groups. Additionally, predicted score normalization is leveraged to align positive predicted scores to fairly treat positives in different intersectional groups. Extensive experiments and analyses on three public datasets show that our proposed approach effectively alleviates the intersectional two-sided unfairness and consistently outperforms previous state-of-the-art methods.
Jointly Modeling Spatio-Temporal Features of Tactile Signals for Action Classification
Lin, Jimmy, Li, Junkai, Gao, Jiasi, Ma, Weizhi, Liu, Yang
Tactile signals collected by wearable electronics are essential in modeling and understanding human behavior. One of the main applications of tactile signals is action classification, especially in healthcare and robotics. However, existing tactile classification methods fail to capture the spatial and temporal features of tactile signals simultaneously, which results in sub-optimal performances. In this paper, we design Spatio-Temporal Aware tactility Transformer (STAT) to utilize continuous tactile signals for action classification. We propose spatial and temporal embeddings along with a new temporal pretraining task in our model, which aims to enhance the transformer in modeling the spatio-temporal features of tactile signals. Specially, the designed temporal pretraining task is to differentiate the time order of tubelet inputs to model the temporal properties explicitly. Experimental results on a public action classification dataset demonstrate that our model outperforms state-of-the-art methods in all metrics.
Information Retrieval Meets Large Language Models: A Strategic Report from Chinese IR Community
Ai, Qingyao, Bai, Ting, Cao, Zhao, Chang, Yi, Chen, Jiawei, Chen, Zhumin, Cheng, Zhiyong, Dong, Shoubin, Dou, Zhicheng, Feng, Fuli, Gao, Shen, Guo, Jiafeng, He, Xiangnan, Lan, Yanyan, Li, Chenliang, Liu, Yiqun, Lyu, Ziyu, Ma, Weizhi, Ma, Jun, Ren, Zhaochun, Ren, Pengjie, Wang, Zhiqiang, Wang, Mingwen, Wen, Ji-Rong, Wu, Le, Xin, Xin, Xu, Jun, Yin, Dawei, Zhang, Peng, Zhang, Fan, Zhang, Weinan, Zhang, Min, Zhu, Xiaofei
The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop's outcomes, including the rethinking of IR's core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.