Ma, Wanyu
Non-Prehensile Tool-Object Manipulation by Integrating LLM-Based Planning and Manoeuvrability-Driven Controls
Lee, Hoi-Yin, Zhou, Peng, Duan, Anqing, Ma, Wanyu, Yang, Chenguang, Navarro-Alarcon, David
The ability to wield tools was once considered exclusive to human intelligence, but it's now known that many other animals, like crows, possess this capability. Yet, robotic systems still fall short of matching biological dexterity. In this paper, we investigate the use of Large Language Models (LLMs), tool affordances, and object manoeuvrability for non-prehensile tool-based manipulation tasks. Our novel method leverages LLMs based on scene information and natural language instructions to enable symbolic task planning for tool-object manipulation. This approach allows the system to convert the human language sentence into a sequence of feasible motion functions. We have developed a novel manoeuvrability-driven controller using a new tool affordance model derived from visual feedback. This controller helps guide the robot's tool utilization and manipulation actions, even within confined areas, using a stepping incremental approach. The proposed methodology is evaluated with experiments to prove its effectiveness under various manipulation scenarios.
RoboNurse-VLA: Robotic Scrub Nurse System based on Vision-Language-Action Model
Li, Shunlei, Wang, Jin, Dai, Rui, Ma, Wanyu, Ng, Wing Yin, Hu, Yingbai, Li, Zheng
In modern healthcare, the demand for autonomous robotic assistants has grown significantly, particularly in the operating room, where surgical tasks require precision and reliability. Robotic scrub nurses have emerged as a promising solution to improve efficiency and reduce human error during surgery. However, challenges remain in terms of accurately grasping and handing over surgical instruments, especially when dealing with complex or difficult objects in dynamic environments. In this work, we introduce a novel robotic scrub nurse system, RoboNurse-VLA, built on a Vision-Language-Action (VLA) model by integrating the Segment Anything Model 2 (SAM 2) and the Llama 2 language model. The proposed RoboNurse-VLA system enables highly precise grasping and handover of surgical instruments in real-time based on voice commands from the surgeon. Leveraging state-of-the-art vision and language models, the system can address key challenges for object detection, pose optimization, and the handling of complex and difficult-to-grasp instruments. Through extensive evaluations, RoboNurse-VLA demonstrates superior performance compared to existing models, achieving high success rates in surgical instrument handovers, even with unseen tools and challenging items. This work presents a significant step forward in autonomous surgical assistance, showcasing the potential of integrating VLA models for real-world medical applications. More details can be found at https://robonurse-vla.github.io.
Adaptive Shape Servoing of Elastic Rods using Parameterized Regression Features and Auto-Tuning Motion Controls
Qi, Jiaming, Ran, Guangtao, Wang, Bohui, Liu, Jian, Ma, Wanyu, Zhou, Peng, Navarro-Alarcon, David
The robotic manipulation of deformable linear objects has shown great potential in a wide range of real-world applications. However, it presents many challenges due to the objects' complex nonlinearity and high-dimensional configuration. In this paper, we propose a new shape servoing framework to automatically manipulate elastic rods through visual feedback. Our new method uses parameterized regression features to compute a compact (low-dimensional) feature vector that quantifies the object's shape, thus, enabling to establish an explicit shape servo-loop. To automatically deform the rod into a desired shape, the proposed adaptive controller iteratively estimates the differential transformation between the robot's motion and the relative shape changes; This valuable capability allows to effectively manipulate objects with unknown mechanical models. An auto-tuning algorithm is introduced to adjust the robot's shaping motions in real-time based on optimal performance criteria. To validate the proposed framework, a detailed experimental study with vision-guided robotic manipulators is presented.