Goto

Collaborating Authors

 Ma, Songde


Weakly Supervised RBM for Semantic Segmentation

AAAI Conferences

In this paper, we propose a weakly supervised Restricted Boltzmann Machines (WRBM) approach to deal with the task of semantic segmentation with only image-level labels available. In WRBM, its hidden nodes are divided into multiple blocks, and each block corresponds to a specific label. Accordingly, semantic segmentation can be directly modeled by learning the mapping from visible layer to the hidden layer of WRBM. Specifically, based on the standard RBM, we import another two terms to make full use of image-level labels and alleviate the effect of noisy labels. First, we expect the hidden response of each superpixel is suppressed on the labels outside its parent image-level label set, and a non-image-level label suppression term is formulated to implicitly import the image-level labels as weak supervision. Second, semantic graph propagation is employed to exploit the cooccurrence between visually similar regions and labels. Besides, we deal with the problems of label imbalance and diverse backgrounds by adapting the block size to the label frequency and appending hidden response blocks corresponding to backgrounds respectively. Extensive experiments on two real-world datasets demonstrate the good performance of our approach compared with some state-of-the-art methods.


Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition

AAAI Conferences

Face recognition has been widely studied due to its importance in various applications. However, the case that both training images and testing images are corrupted is not well addressed. Motivated by the success of low-rank matrix recovery, we propose a novel semi-supervised low-rank matrix recovery algorithm for robust face recognition. The proposed method can learn robust discriminative representations for both training images and testing images simultaneously by exploiting the classwise block-diagonal structure. Specifically, low-rank matrix approximation can handle the possible contamination of data. Moreover, the classwise block-diagonal structure is exploited to promote discrimination of representations for robust recognition. The above issues are formulated into a unified objective function and we design an efficient optimization procedure based on augmented Lagrange multiplier method to solve it. Extensive experiments on three public databases are performed to validate the effectiveness of our approach. The strong identification capability of representations with block-diagonal structure is verified.