Ma, Shaoping
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph
Ma, Weizhi, Zhang, Min, Cao, Yue, Woojeong, null, Jin, null, Wang, Chenyang, Liu, Yiqun, Ma, Shaoping, Ren, Xiang
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) prediction of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate \textit{induction of explainable rules from knowledge graph} with \textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experiments\footnote{Code and data can be found at: \url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over "noisy" item knowledge graphs, generated by linking item names to related entities.
Fraudulent Support Telephone Number Identification Based on Co-Occurrence Information on the Web
Li, Xin (Tsinghua University) | Liu, Yiqun (Tsinghua University) | Zhang, Min (Tsinghua University) | Ma, Shaoping (Tsinghua University)
"Fraudulent support phones" refers to the misleading telephone numbers placed on Web pages or other media that claim to provide services with which they are not associated. Most fraudulent support phone information is found on search engine result pages (SERPs), and such information substantially degrades the search engine user experience. In this paper, we propose an approach to identify fraudulent support telephone numbers on the Web based on the co-occurrence relations between telephone numbers that appear on SERPs. We start from a small set of seed official support phone numbers and seed fraudulent numbers. Then, we construct a co-occurrence graph according to the co-occurrence relationships of the telephone numbers that appear on Web pages. Additionally, we take the page layout information into consideration on the assumption that telephone numbers that appear in nearby page blocks should be regarded as more closely related. Finally, we develop a propagation algorithm to diffuse the trust scores of seed official support phone numbers and the distrust scores of the seed fraudulent numbers on the co-occurrence graph to detect additional fraudulent numbers. Experimental results based on over 1.5 million SERPs produced by a popular Chinese commercial search engine indicate that our approach outperforms TrustRank, Anti-TrustRank and Good-Bad Rank algorithms by achieving an AUC value of over 0.90.