Goto

Collaborating Authors

 Ma, Ren


Unsupervised Topic Models are Data Mixers for Pre-training Language Models

arXiv.org Artificial Intelligence

The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various domains, sources, and topics. Effectively integrating these heterogeneous data sources is crucial for optimizing LLM performance. Previous research has predominantly concentrated on domain-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a simple yet effective topic-based data mixing strategy that utilizes fine-grained topics generated through our topic modeling method, DataWeave. DataWeave employs a multi-stage clustering process to group semantically similar documents and utilizes LLMs to generate detailed topics, thereby facilitating a more nuanced understanding of dataset composition. Our strategy employs heuristic methods to upsample or downsample specific topics, which significantly enhances LLM performance on downstream tasks, achieving superior results compared to previous, more complex data mixing approaches. Furthermore, we confirm that the topics Science and Relationships are particularly effective, yielding the most substantial performance improvements. We will make our code and datasets publicly available.


Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation

arXiv.org Artificial Intelligence

First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts. Existing benchmarks often rely on extensive human annotation or handcrafted templates, making it difficult to achieve the necessary complexity, scalability, and diversity for robust evaluation. To address these limitations, we propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models (LLMs) with the rigor and precision of symbolic provers, enabling the creation of a scalable, diverse, and high-quality FOL reasoning dataset, ProverQA. ProverQA is also distinguished by its inclusion of accessible and logically coherent intermediate reasoning steps for each problem. Our evaluation shows that state-of-the-art LLMs struggle to solve ProverQA problems, even with CoT prompting, highlighting the dataset's challenging nature. We also finetune Llama3.1-8B-Instruct on a separate training set generated by our framework. The finetuned model demonstrates consistent improvements on both in-distribution and out-of-distribution test sets, suggesting the value of our proposed data generation framework. Code available at: https://github.com/opendatalab/ProverGen


FoundaBench: Evaluating Chinese Fundamental Knowledge Capabilities of Large Language Models

arXiv.org Artificial Intelligence

In the burgeoning field of large language models (LLMs), the assessment of fundamental knowledge remains a critical challenge, particularly for models tailored to Chinese language and culture. This paper introduces FoundaBench, a pioneering benchmark designed to rigorously evaluate the fundamental knowledge capabilities of Chinese LLMs. FoundaBench encompasses a diverse array of 3354 multiple-choice questions across common sense and K-12 educational subjects, meticulously curated to reflect the breadth and depth of everyday and academic knowledge. We present an extensive evaluation of 12 state-of-the-art LLMs using FoundaBench, employing both traditional assessment methods and our CircularEval protocol to mitigate potential biases in model responses. Our results highlight the superior performance of models pre-trained on Chinese corpora, and reveal a significant disparity between models' reasoning and memory recall capabilities. The insights gleaned from FoundaBench evaluations set a new standard for understanding the fundamental knowledge of LLMs, providing a robust framework for future advancements in the field.