Ma, Longjun
Analyzing Nobel Prize Literature with Large Language Models
Yang, Zhenyuan, Liu, Zhengliang, Zhang, Jing, Lu, Cen, Tai, Jiaxin, Zhong, Tianyang, Li, Yiwei, Zhao, Siyan, Yao, Teng, Liu, Qing, Yang, Jinlin, Liu, Qixin, Li, Zhaowei, Wang, Kexin, Ma, Longjun, Zhu, Dajiang, Ren, Yudan, Ge, Bao, Zhang, Wei, Qiang, Ning, Zhang, Tuo, Liu, Tianming
This study examines the capabilities of advanced Large Language Models (LLMs), particularly the o1 model, in the context of literary analysis. The outputs of these models are compared directly to those produced by graduate-level human participants. By focusing on two Nobel Prize-winning short stories, 'Nine Chapters' by Han Kang, the 2024 laureate, and 'Friendship' by Jon Fosse, the 2023 laureate, the research explores the extent to which AI can engage with complex literary elements such as thematic analysis, intertextuality, cultural and historical contexts, linguistic and structural innovations, and character development. Given the Nobel Prize's prestige and its emphasis on cultural, historical, and linguistic richness, applying LLMs to these works provides a deeper understanding of both human and AI approaches to interpretation. The study uses qualitative and quantitative evaluations of coherence, creativity, and fidelity to the text, revealing the strengths and limitations of AI in tasks typically reserved for human expertise. While LLMs demonstrate strong analytical capabilities, particularly in structured tasks, they often fall short in emotional nuance and coherence, areas where human interpretation excels. This research underscores the potential for human-AI collaboration in the humanities, opening new opportunities in literary studies and beyond.
Legal Evalutions and Challenges of Large Language Models
Wang, Jiaqi, Zhao, Huan, Yang, Zhenyuan, Shu, Peng, Chen, Junhao, Sun, Haobo, Liang, Ruixi, Li, Shixin, Shi, Pengcheng, Ma, Longjun, Liu, Zongjia, Liu, Zhengliang, Zhong, Tianyang, Zhang, Yutong, Ma, Chong, Zhang, Xin, Zhang, Tuo, Ding, Tianli, Ren, Yudan, Liu, Tianming, Jiang, Xi, Zhang, Shu
In this paper, we review legal testing methods based on Large Language Models (LLMs), using the OPENAI o1 model as a case study to evaluate the performance of large models in applying legal provisions. We compare current state-of-the-art LLMs, including open-source, closed-source, and legal-specific models trained specifically for the legal domain. Systematic tests are conducted on English and Chinese legal cases, and the results are analyzed in depth. Through systematic testing of legal cases from common law systems and China, this paper explores the strengths and weaknesses of LLMs in understanding and applying legal texts, reasoning through legal issues, and predicting judgments. The experimental results highlight both the potential and limitations of LLMs in legal applications, particularly in terms of challenges related to the interpretation of legal language and the accuracy of legal reasoning. Finally, the paper provides a comprehensive analysis of the advantages and disadvantages of various types of models, offering valuable insights and references for the future application of AI in the legal field.