Ma, Junyi
EADReg: Probabilistic Correspondence Generation with Efficient Autoregressive Diffusion Model for Outdoor Point Cloud Registration
Gong, Linrui, Liu, Jiuming, Ma, Junyi, Liu, Lihao, Wang, Yaonan, Wang, Hesheng
Diffusion models have shown the great potential in the point cloud registration (PCR) task, especially for enhancing the robustness to challenging cases. However, existing diffusion-based PCR methods primarily focus on instance-level scenarios and struggle with outdoor LiDAR points, where the sparsity, irregularity, and huge point scale inherent in LiDAR points pose challenges to establishing dense global point-to-point correspondences. To address this issue, we propose a novel framework named EADReg for efficient and robust registration of LiDAR point clouds based on autoregressive diffusion models. EADReg follows a coarse-to-fine registration paradigm. In the coarse stage, we employ a Bi-directional Gaussian Mixture Model (BGMM) to reject outlier points and obtain purified point cloud pairs. BGMM establishes correspondences between the Gaussian Mixture Models (GMMs) from the source and target frames, enabling reliable coarse registration based on filtered features and geometric information. In the fine stage, we treat diffusion-based PCR as an autoregressive process to generate robust point correspondences, which are then iteratively refined on upper layers. Despite common criticisms of diffusion-based methods regarding inference speed, EADReg achieves runtime comparable to convolutional-based methods. Extensive experiments on the KITTI and NuScenes benchmark datasets highlight the state-of-the-art performance of our proposed method. Codes will be released upon publication.
Goal-based Neural Physics Vehicle Trajectory Prediction Model
Gan, Rui, Shi, Haotian, Li, Pei, Wu, Keshu, An, Bocheng, Li, Linheng, Ma, Junyi, Ma, Chengyuan, Ran, Bin
Vehicle trajectory prediction plays a vital role in intelligent transportation systems and autonomous driving, as it significantly affects vehicle behavior planning and control, thereby influencing traffic safety and efficiency. Numerous studies have been conducted to predict short-term vehicle trajectories in the immediate future. However, long-term trajectory prediction remains a major challenge due to accumulated errors and uncertainties. Additionally, balancing accuracy with interpretability in the prediction is another challenging issue in predicting vehicle trajectory. To address these challenges, this paper proposes a Goal-based Neural Physics Vehicle Trajectory Prediction Model (GNP). The GNP model simplifies vehicle trajectory prediction into a two-stage process: determining the vehicle's goal and then choosing the appropriate trajectory to reach this goal. The GNP model contains two sub-modules to achieve this process. The first sub-module employs a multi-head attention mechanism to accurately predict goals. The second sub-module integrates a deep learning model with a physics-based social force model to progressively predict the complete trajectory using the generated goals. The GNP demonstrates state-of-the-art long-term prediction accuracy compared to four baseline models. We provide interpretable visualization results to highlight the multi-modality and inherent nature of our neural physics framework. Additionally, ablation studies are performed to validate the effectiveness of our key designs.
Explicit Interaction for Fusion-Based Place Recognition
Xu, Jingyi, Ma, Junyi, Wu, Qi, Zhou, Zijie, Wang, Yue, Chen, Xieyuanli, Pei, Ling
Fusion-based place recognition is an emerging technique jointly utilizing multi-modal perception data, to recognize previously visited places in GPS-denied scenarios for robots and autonomous vehicles. Recent fusion-based place recognition methods combine multi-modal features in implicit manners. While achieving remarkable results, they do not explicitly consider what the individual modality affords in the fusion system. Therefore, the benefit of multi-modal feature fusion may not be fully explored. In this paper, we propose a novel fusion-based network, dubbed EINet, to achieve explicit interaction of the two modalities. EINet uses LiDAR ranges to supervise more robust vision features for long time spans, and simultaneously uses camera RGB data to improve the discrimination of LiDAR point clouds. In addition, we develop a new benchmark for the place recognition task based on the nuScenes dataset. To establish this benchmark for future research with comprehensive comparisons, we introduce both supervised and self-supervised training schemes alongside evaluation protocols. We conduct extensive experiments on the proposed benchmark, and the experimental results show that our EINet exhibits better recognition performance as well as solid generalization ability compared to the state-of-the-art fusion-based place recognition approaches. Our open-source code and benchmark are released at: https://github.com/BIT-XJY/EINet.
PC-NeRF: Parent-Child Neural Radiance Fields Using Sparse LiDAR Frames in Autonomous Driving Environments
Hu, Xiuzhong, Xiong, Guangming, Zang, Zheng, Jia, Peng, Han, Yuxuan, Ma, Junyi
Large-scale 3D scene reconstruction and novel view synthesis are vital for autonomous vehicles, especially utilizing temporally sparse LiDAR frames. However, conventional explicit representations remain a significant bottleneck towards representing the reconstructed and synthetic scenes at unlimited resolution. Although the recently developed neural radiance fields (NeRF) have shown compelling results in implicit representations, the problem of large-scale 3D scene reconstruction and novel view synthesis using sparse LiDAR frames remains unexplored. To bridge this gap, we propose a 3D scene reconstruction and novel view synthesis framework called parent-child neural radiance field (PC-NeRF). Based on its two modules, parent NeRF and child NeRF, the framework implements hierarchical spatial partitioning and multi-level scene representation, including scene, segment, and point levels. The multi-level scene representation enhances the efficient utilization of sparse LiDAR point cloud data and enables the rapid acquisition of an approximate volumetric scene representation. With extensive experiments, PC-NeRF is proven to achieve high-precision novel LiDAR view synthesis and 3D reconstruction in large-scale scenes. Moreover, PC-NeRF can effectively handle situations with sparse LiDAR frames and demonstrate high deployment efficiency with limited training epochs. Our approach implementation and the pre-trained models are available at https://github.com/biter0088/pc-nerf.
LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for Place Recognition
Zhou, Zijie, Xu, Jingyi, Xiong, Guangming, Ma, Junyi
Place recognition is one of the most crucial modules for autonomous vehicles to identify places that were previously visited in GPS-invalid environments. Sensor fusion is considered an effective method to overcome the weaknesses of individual sensors. In recent years, multimodal place recognition fusing information from multiple sensors has gathered increasing attention. However, most existing multimodal place recognition methods only use limited field-of-view camera images, which leads to an imbalance between features from different modalities and limits the effectiveness of sensor fusion. In this paper, we present a novel neural network named LCPR for robust multimodal place recognition, which fuses LiDAR point clouds with multi-view RGB images to generate discriminative and yaw-rotation invariant representations of the environment. A multi-scale attention-based fusion module is proposed to fully exploit the panoramic views from different modalities of the environment and their correlations. We evaluate our method on the nuScenes dataset, and the experimental results show that our method can effectively utilize multi-view camera and LiDAR data to improve the place recognition performance while maintaining strong robustness to viewpoint changes. Our open-source code and pre-trained models are available at https://github.com/ZhouZijie77/LCPR .
CVTNet: A Cross-View Transformer Network for Place Recognition Using LiDAR Data
Ma, Junyi, Xiong, Guangming, Xu, Jingyi, Chen, Xieyuanli
LiDAR-based place recognition (LPR) is one of the most crucial components of autonomous vehicles to identify previously visited places in GPS-denied environments. Most existing LPR methods use mundane representations of the input point cloud without considering different views, which may not fully exploit the information from LiDAR sensors. In this paper, we propose a cross-view transformer-based network, dubbed CVTNet, to fuse the range image views (RIVs) and bird's eye views (BEVs) generated from the LiDAR data. It extracts correlations within the views themselves using intra-transformers and between the two different views using inter-transformers. Based on that, our proposed CVTNet generates a yaw-angle-invariant global descriptor for each laser scan end-to-end online and retrieves previously seen places by descriptor matching between the current query scan and the pre-built database. We evaluate our approach on three datasets collected with different sensor setups and environmental conditions. The experimental results show that our method outperforms the state-of-the-art LPR methods with strong robustness to viewpoint changes and long-time spans. Furthermore, our approach has a good real-time performance that can run faster than the typical LiDAR frame rate. The implementation of our method is released as open source at: https://github.com/BIT-MJY/CVTNet.
PC-NeRF: Parent-Child Neural Radiance Fields under Partial Sensor Data Loss in Autonomous Driving Environments
Hu, Xiuzhong, Xiong, Guangming, Zang, Zheng, Jia, Peng, Han, Yuxuan, Ma, Junyi
Reconstructing large-scale 3D scenes is essential for autonomous vehicles, especially when partial sensor data is lost. Although the recently developed neural radiance fields (NeRF) have shown compelling results in implicit representations, the large-scale 3D scene reconstruction using partially lost LiDAR point cloud data still needs to be explored. To bridge this gap, we propose a novel 3D scene reconstruction framework called parent-child neural radiance field (PC-NeRF). The framework comprises two modules, the parent NeRF and the child NeRF, to simultaneously optimize scene-level, segment-level, and point-level scene representations. Sensor data can be utilized more efficiently by leveraging the segment-level representation capabilities of child NeRFs, and an approximate volumetric representation of the scene can be quickly obtained even with limited observations. With extensive experiments, our proposed PC-NeRF is proven to achieve high-precision 3D reconstruction in large-scale scenes. Moreover, PC-NeRF can effectively tackle situations where partial sensor data is lost and has high deployment efficiency with limited training time. Our approach implementation and the pre-trained models will be available at https://github.com/biter0088/pc-nerf.
OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition
Ma, Junyi, Zhang, Jun, Xu, Jintao, Ai, Rui, Gu, Weihao, Chen, Xieyuanli
Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this paper, we address the problem of place recognition based on 3D LiDAR scans recorded by an autonomous vehicle. We propose a novel lightweight neural network exploiting the range image representation of LiDAR sensors to achieve fast execution with less than 2 ms per frame. We design a yaw-angle-invariant architecture exploiting a transformer network, which boosts the place recognition performance of our method. We evaluate our approach on the KITTI and Ford Campus datasets. The experimental results show that our method can effectively detect loop closures compared to the state-of-the-art methods and generalizes well across different environments. To evaluate long-term place recognition performance, we provide a novel dataset containing LiDAR sequences recorded by a mobile robot in repetitive places at different times. The implementation of our method and dataset are released here: https://github.com/haomo-ai/OverlapTransformer
PCPNet: An Efficient and Semantic-Enhanced Transformer Network for Point Cloud Prediction
Luo, Zhen, Ma, Junyi, Zhou, Zijie, Xiong, Guangming
The ability to predict future structure features of environments based on past perception information is extremely needed by autonomous vehicles, which helps to make the following decision-making and path planning more reasonable. Recently, point cloud prediction (PCP) is utilized to predict and describe future environmental structures by the point cloud form. In this letter, we propose a novel efficient Transformer-based network to predict the future LiDAR point clouds exploiting the past point cloud sequences. We also design a semantic auxiliary training strategy to make the predicted LiDAR point cloud sequence semantically similar to the ground truth and thus improves the significance of the deployment for more tasks in real-vehicle applications. Our approach is completely self-supervised, which means it does not require any manual labeling and has a solid generalization ability toward different environments. The experimental results show that our method outperforms the state-of-the-art PCP methods on the prediction results and semantic similarity, and has a good real-time performance. Our open-source code and pre-trained models are available at https://github.com/Blurryface0814/PCPNet.