Goto

Collaborating Authors

 Ma, Jianhua


SS-CTML: Self-Supervised Cross-Task Mutual Learning for CT Image Reconstruction

arXiv.org Artificial Intelligence

Supervised deep-learning (SDL) techniques with paired training datasets have been widely studied for X-ray computed tomography (CT) image reconstruction. However, due to the difficulties of obtaining paired training datasets in clinical routine, the SDL methods are still away from common uses in clinical practices. In recent years, self-supervised deep-learning (SSDL) techniques have shown great potential for the studies of CT image reconstruction. In this work, we propose a self-supervised cross-task mutual learning (SS-CTML) framework for CT image reconstruction. Specifically, a sparse-view scanned and a limited-view scanned sinogram data are first extracted from a full-view scanned sinogram data, which results in three individual reconstruction tasks, i.e., the full-view CT (FVCT) reconstruction, the sparse-view CT (SVCT) reconstruction, and limited-view CT (LVCT) reconstruction. Then, three neural networks are constructed for the three reconstruction tasks. Considering that the ultimate goals of the three tasks are all to reconstruct high-quality CT images, we therefore construct a set of cross-task mutual learning objectives for the three tasks, in which way, the three neural networks can be self-supervised optimized by learning from each other. Clinical datasets are adopted to evaluate the effectiveness of the proposed framework. Experimental results demonstrate that the SS-CTML framework can obtain promising CT image reconstruction performance in terms of both quantitative and qualitative measurements.


DA-TransUNet: Integrating Spatial and Channel Dual Attention with Transformer U-Net for Medical Image Segmentation

arXiv.org Artificial Intelligence

Accurate medical image segmentation is critical for disease quantification and treatment evaluation. While traditional Unet architectures and their transformer-integrated variants excel in automated segmentation tasks. However, they lack the ability to harness the intrinsic position and channel features of image. Existing models also struggle with parameter efficiency and computational complexity, often due to the extensive use of Transformers. To address these issues, this study proposes a novel deep medical image segmentation framework, called DA-TransUNet, aiming to integrate the Transformer and dual attention block(DA-Block) into the traditional U-shaped architecture. Unlike earlier transformer-based U-net models, DA-TransUNet utilizes Transformers and DA-Block to integrate not only global and local features, but also image-specific positional and channel features, improving the performance of medical image segmentation. By incorporating a DA-Block at the embedding layer and within each skip connection layer, we substantially enhance feature extraction capabilities and improve the efficiency of the encoder-decoder structure. DA-TransUNet demonstrates superior performance in medical image segmentation tasks, consistently outperforming state-of-the-art techniques across multiple datasets. In summary, DA-TransUNet offers a significant advancement in medical image segmentation, providing an effective and powerful alternative to existing techniques. Our architecture stands out for its ability to improve segmentation accuracy, thereby advancing the field of automated medical image diagnostics. The codes and parameters of our model will be publicly available at https://github.com/SUN-1024/DA-TransUnet.


Machine learning electron correlation in a disordered medium

arXiv.org Machine Learning

Learning from data has led to a paradigm shift in computational materials science. In particular, it has been shown that neural networks can learn the potential energy surface and interatomic forces through examples, thus bypassing the computationally expensive density functional theory calculations. Combining many-body techniques with a deep learning approach, we demonstrate that a fully-connected neural network is able to learn the complex collective behavior of electrons in strongly correlated systems. Specifically, we consider the Anderson-Hubbard (AH) model, which is a canonical system for studying the interplay between electron correlation and strong localization. The ground states of the AH model on a square lattice are obtained using the real-space Gutzwiller method. The obtained solutions are used to train a multi-task multi-layer neural network, which subsequently can accurately predict quantities such as the local probability of double occupation and the quasiparticle weight, given the disorder potential in the neighborhood as the input.


Building Smart Communities with Cyber-Physical Systems

arXiv.org Artificial Intelligence

There is a growing trend towards the convergence of cyber-physical systems (CPS) and social computing, which will lead to the emergence of smart communities composed of various objects (including both human individuals and physical things) that interact and cooperate with each other. These smart communities promise to enable a number of innovative applications and services that will improve the quality of life. This position paper addresses some opportunities and challenges of building smart communities characterized by cyber-physical and social intelligence.