Goto

Collaborating Authors

 Ma, Haoxiang


Robust Reward Design for Markov Decision Processes

arXiv.org Artificial Intelligence

The problem of reward design examines the interaction between a leader and a follower, where the leader aims to shape the follower's behavior to maximize the leader's payoff by modifying the follower's reward function. Current approaches to reward design rely on an accurate model of how the follower responds to reward modifications, which can be sensitive to modeling inaccuracies. To address this issue of sensitivity, we present a solution that offers robustness against uncertainties in modeling the follower, including 1) how the follower breaks ties in the presence of nonunique best responses, 2) inexact knowledge of how the follower perceives reward modifications, and 3) bounded rationality of the follower. Our robust solution is guaranteed to exist under mild conditions and can be obtained numerically by solving a mixed-integer linear program. Numerical experiments on multiple test cases demonstrate that our solution improves robustness compared to the standard approach without incurring significant additional computing costs.


Generalizing 6-DoF Grasp Detection via Domain Prior Knowledge

arXiv.org Artificial Intelligence

We focus on the generalization ability of the 6-DoF grasp detection method in this paper. While learning-based grasp detection methods can predict grasp poses for unseen objects using the grasp distribution learned from the training set, they often exhibit a significant performance drop when encountering objects with diverse shapes and structures. To enhance the grasp detection methods' generalization ability, we incorporate domain prior knowledge of robotic grasping, enabling better adaptation to objects with significant shape and structure differences. More specifically, we employ the physical constraint regularization during the training phase to guide the model towards predicting grasps that comply with the physical rule on grasping. For the unstable grasp poses predicted on novel objects, we design a contact-score joint optimization using the projection contact map to refine these poses in cluttered scenarios. Extensive experiments conducted on the GraspNet-1billion benchmark demonstrate a substantial performance gain on the novel object set and the real-world grasping experiments also demonstrate the effectiveness of our generalizing 6-DoF grasp detection method.


Sim-to-Real Grasp Detection with Global-to-Local RGB-D Adaptation

arXiv.org Artificial Intelligence

This paper focuses on the sim-to-real issue of RGB-D grasp detection and formulates it as a domain adaptation problem. In this case, we present a global-to-local method to address hybrid domain gaps in RGB and depth data and insufficient multi-modal feature alignment. First, a self-supervised rotation pre-training strategy is adopted to deliver robust initialization for RGB and depth networks. We then propose a global-to-local alignment pipeline with individual global domain classifiers for scene features of RGB and depth images as well as a local one specifically working for grasp features in the two modalities. In particular, we propose a grasp prototype adaptation module, which aims to facilitate fine-grained local feature alignment by dynamically updating and matching the grasp prototypes from the simulation and real-world scenarios throughout the training process. Due to such designs, the proposed method substantially reduces the domain shift and thus leads to consistent performance improvements. Extensive experiments are conducted on the GraspNet-Planar benchmark and physical environment, and superior results are achieved which demonstrate the effectiveness of our method.


Covert Planning against Imperfect Observers

arXiv.org Artificial Intelligence

Covert planning refers to a class of constrained planning problems where an agent aims to accomplish a task with minimal information leaked to a passive observer to avoid detection. However, existing methods of covert planning often consider deterministic environments or do not exploit the observer's imperfect information. This paper studies how covert planning can leverage the coupling of stochastic dynamics and the observer's imperfect observation to achieve optimal task performance without being detected. Specifically, we employ a Markov decision process to model the interaction between the agent and its stochastic environment, and a partial observation function to capture the leaked information to a passive observer. Assuming the observer employs hypothesis testing to detect if the observation deviates from a nominal policy, the covert planning agent aims to maximize the total discounted reward while keeping the probability of being detected as an adversary below a given threshold. We prove that finite-memory policies are more powerful than Markovian policies in covert planning. Then, we develop a primal-dual proximal policy gradient method with a two-time-scale update to compute a (locally) optimal covert policy. We demonstrate the effectiveness of our methods using a stochastic gridworld example. Our experimental results illustrate that the proposed method computes a policy that maximizes the adversary's expected reward without violating the detection constraint, and empirically demonstrates how the environmental noises can influence the performance of the covert policies.


RGB-D Grasp Detection via Depth Guided Learning with Cross-modal Attention

arXiv.org Artificial Intelligence

Planar grasp detection is one of the most fundamental tasks to robotic manipulation, and the recent progress of consumer-grade RGB-D sensors enables delivering more comprehensive features from both the texture and shape modalities. However, depth maps are generally of a relatively lower quality with much stronger noise compared to RGB images, making it challenging to acquire grasp depth and fuse multi-modal clues. To address the two issues, this paper proposes a novel learning based approach to RGB-D grasp detection, namely Depth Guided Cross-modal Attention Network (DGCAN). To better leverage the geometry information recorded in the depth channel, a complete 6-dimensional rectangle representation is adopted with the grasp depth dedicatedly considered in addition to those defined in the common 5-dimensional one. The prediction of the extra grasp depth substantially strengthens feature learning, thereby leading to more accurate results. Moreover, to reduce the negative impact caused by the discrepancy of data quality in two modalities, a Local Cross-modal Attention (LCA) module is designed, where the depth features are refined according to cross-modal relations and concatenated to the RGB ones for more sufficient fusion. Extensive simulation and physical evaluations are conducted and the experimental results highlight the superiority of the proposed approach.


Optimal Decoy Resource Allocation for Proactive Defense in Probabilistic Attack Graphs

arXiv.org Artificial Intelligence

This paper investigates the problem of synthesizing proactive defense systems in which the defender can allocate deceptive targets and modify the cost of actions for the attacker who aims to compromise security assets in this system. We model the interaction of the attacker and the system using a formal security model -- a probabilistic attack graph. By allocating fake targets/decoys, the defender aims to distract the attacker from compromising true targets. By increasing the cost of some attack actions, the defender aims to discourage the attacker from committing to certain policies and thereby improve the defense. To optimize the defense given limited decoy resources and operational constraints, we formulate the synthesis problem as a bi-level optimization problem, while the defender designs the system, in anticipation of the attacker's best response given that the attacker has disinformation about the system due to the use of deception. Though the general formulation with bi-level optimization is NP-hard, we show that under certain assumptions, the problem can be transformed into a constrained optimization problem. We proposed an algorithm to approximately solve this constrained optimization problem using a novel incentive-design method for projected gradient ascent. We demonstrate the effectiveness of the proposed method using extensive numerical experiments.


Towards Scale Balanced 6-DoF Grasp Detection in Cluttered Scenes

arXiv.org Artificial Intelligence

In this paper, we focus on the problem of feature learning in the presence of scale imbalance for 6-DoF grasp detection and propose a novel approach to especially address the difficulty in dealing with small-scale samples. A Multi-scale Cylinder Grouping (MsCG) module is presented to enhance local geometry representation by combining multi-scale cylinder features and global context. Moreover, a Scale Balanced Learning (SBL) loss and an Object Balanced Sampling (OBS) strategy are designed, where SBL enlarges the gradients of the samples whose scales are in low frequency by apriori weights while OBS captures more points on small-scale objects with the help of an auxiliary segmentation network. They alleviate the influence of the uneven distribution of grasp scales in training and inference respectively. In addition, Noisy-clean Mix (NcM) data augmentation is introduced to facilitate training, aiming to bridge the domain gap between synthetic and raw scenes in an efficient way by generating more data which mix them into single ones at instance-level. Extensive experiments are conducted on the GraspNet-1Billion benchmark and competitive results are reached with significant gains on small-scale cases. Besides, the performance of real-world grasping highlights its generalization ability. Our code is available at https://github.com/mahaoxiang822/Scale-Balanced-Grasp.


Attention-Based Planning with Active Perception

arXiv.org Artificial Intelligence

Attention control is a key cognitive ability for humans to select information relevant to the current task. This paper develops a computational model of attention and an algorithm for attention-based probabilistic planning in Markov decision processes. In attention-based planning, the robot decides to be in different attention modes. An attention mode corresponds to a subset of state variables monitored by the robot. By switching between different attention modes, the robot actively perceives task-relevant information to reduce the cost of information acquisition and processing, while achieving near-optimal task performance. Though planning with attention-based active perception inevitably introduces partial observations, a partially observable MDP formulation makes the problem computational expensive to solve. Instead, our proposed method employs a hierarchical planning framework in which the robot determines what to pay attention to and for how long the attention should be sustained before shifting to other information sources. During the attention sustaining phase, the robot carries out a sub-policy, computed from an abstraction of the original MDP given the current attention. We use an example where a robot is tasked to capture a set of intruders in a stochastic gridworld. The experimental results show that the proposed method enables information- and computation-efficient optimal planning in stochastic environments.