Goto

Collaborating Authors

 Ma, Haotian


Computation-Efficient and Recognition-Friendly 3D Point Cloud Privacy Protection

arXiv.org Artificial Intelligence

3D point cloud has been widely used in applications such as self-driving cars, robotics, CAD models, etc. To the best of our knowledge, these applications raised the issue of privacy leakage in 3D point clouds, which has not been studied well. Different from the 2D image privacy, which is related to texture and 2D geometric structure, the 3D point cloud is texture-less and only relevant to 3D geometric structure. In this work, we defined the 3D point cloud privacy problem and proposed an efficient privacy-preserving framework named PointFlowGMM that can support downstream classification and segmentation tasks without seeing the original data. Using a flow-based generative model, the point cloud is projected into a latent Gaussian mixture distributed subspace. We further designed a novel angular similarity loss to obfuscate the original geometric structure and reduce the model size from 767MB to 120MB without a decrease in recognition performance. The projected point cloud in the latent space is orthogonally rotated randomly to further protect the original geometric structure, the class-to-class relationship is preserved after rotation, thus, the protected point cloud can support the recognition task. We evaluated our model on multiple datasets and achieved comparable recognition results on encrypted point clouds compared to the original point clouds.


Suicide Risk Assessment on Social Media with Semi-Supervised Learning

arXiv.org Artificial Intelligence

With social media communities increasingly becoming places where suicidal individuals post and congregate, natural language processing presents an exciting avenue for the development of automated suicide risk assessment systems. However, past efforts suffer from a lack of labeled data and class imbalances within the available labeled data. To accommodate this task's imperfect data landscape, we propose a semi-supervised framework that leverages labeled (n=500) and unlabeled (n=1,500) data and expands upon the self-training algorithm with a novel pseudo-label acquisition process designed to handle imbalanced datasets. To further ensure pseudo-label quality, we manually verify a subset of the pseudo-labeled data that was not predicted unanimously across multiple trials of pseudo-label generation. We test various models to serve as the backbone for this framework, ultimately deciding that RoBERTa performs the best. Ultimately, by leveraging partially validated pseudo-labeled data in addition to ground-truth labeled data, we substantially improve our model's ability to assess suicide risk from social media posts.


AutoWS-Bench-101: Benchmarking Automated Weak Supervision with 100 Labels

arXiv.org Machine Learning

Weak supervision (WS) is a powerful method to build labeled datasets for training supervised models in the face of little-to-no labeled data. It replaces hand-labeling data with aggregating multiple noisy-but-cheap label estimates expressed by labeling functions (LFs). While it has been used successfully in many domains, weak supervision's application scope is limited by the difficulty of constructing labeling functions for domains with complex or high-dimensional features. To address this, a handful of methods have proposed automating the LF design process using a small set of ground truth labels. In this work, we introduce AutoWS-Bench-101: a framework for evaluating automated WS (AutoWS) techniques in challenging WS settings -- a set of diverse application domains on which it has been previously difficult or impossible to apply traditional WS techniques. While AutoWS is a promising direction toward expanding the application-scope of WS, the emergence of powerful methods such as zero-shot foundation models reveals the need to understand how AutoWS techniques compare or cooperate with modern zero-shot or few-shot learners. This informs the central question of AutoWS-Bench-101: given an initial set of 100 labels for each task, we ask whether a practitioner should use an AutoWS method to generate additional labels or use some simpler baseline, such as zero-shot predictions from a foundation model or supervised learning. We observe that in many settings, it is necessary for AutoWS methods to incorporate signal from foundation models if they are to outperform simple few-shot baselines, and AutoWS-Bench-101 promotes future research in this direction. We conclude with a thorough ablation study of AutoWS methods.


Rotation-Equivariant Neural Networks for Privacy Protection

arXiv.org Machine Learning

In order to prevent leaking input information from intermediate-layer features, this paper proposes a method to revise the traditional neural network into the rotation-equivariant neural network (RENN). Compared to the traditional neural network, the RENN uses d-ary vectors/tensors as features, in which each element is a d-ary number. These d-ary features can be rotated (analogous to the rotation of a d-dimensional vector) with a random angle as the encryption process. Input information is hidden in this target phase of d-ary features for attribute obfuscation. Even if attackers have obtained network parameters and intermediate-layer features, they cannot extract input information without knowing the target phase. Hence, the input privacy can be effectively protected by the RENN. Besides, the output accuracy of RENNs only degrades mildly compared to traditional neural networks, and the computational cost is significantly less than the homomorphic encryption.


Quantifying Layerwise Information Discarding of Neural Networks

arXiv.org Machine Learning

This paper presents a method to explain how input information is discarded through intermediate layers of a neural network during the forward propagation, in order to quantify and diagnose knowledge representations of pre-trained deep neural networks. We define two types of entropy-based metrics, i.e., the strict information discarding and the reconstruction uncertainty, which measure input information of a specific layer from two perspectives. We develop a method to enable efficient computation of such entropy-based metrics. Our method can be broadly applied to various neural networks and enable comprehensive comparisons between different layers of different networks. Preliminary experiments have shown the effectiveness of our metrics in analyzing benchmark networks and explaining existing deep-learning techniques.


Complex-Valued Neural Networks for Privacy Protection

arXiv.org Machine Learning

This paper proposes a generic method to revise traditional neural networks for privacy protection. Our method is designed to prevent inversion attacks, i.e., avoiding recovering private information from intermediate-layer features of a neural network. Our method transforms real-valued features of an intermediate layer into complex-valued features, in which private information is hidden in a random phase of the transformed features. To prevent the adversary from recovering the phase, we adopt an adversarial-learning algorithm to generate the complex-valued feature. More crucially, the transformed feature can be directly processed by the deep neural network, but without knowing the true phase, people cannot recover either the input information or the prediction result. Preliminary experiments with various neural networks (including the LeNet, the VGG, and residual networks) on different datasets have shown that our method can successfully defend feature inversion attacks while preserving learning accuracy.