Ma, Chengzhong
REGNet V2: End-to-End REgion-based Grasp Detection Network for Grippers of Different Sizes in Point Clouds
Zhao, Binglei, Wang, Han, Tang, Jian, Ma, Chengzhong, Zhang, Hanbo, Zhang, Jiayuan, Lan, Xuguang, Chen, Xingyu
Grasping has been a crucial but challenging problem in robotics for many years. One of the most important challenges is how to make grasping generalizable and robust to novel objects as well as grippers in unstructured environments. We present \regnet, a robotic grasping system that can adapt to different parallel jaws to grasp diversified objects. To support different grippers, \regnet embeds the gripper parameters into point clouds, based on which it predicts suitable grasp configurations. It includes three components: Score Network (SN), Grasp Region Network (GRN), and Refine Network (RN). In the first stage, SN is used to filter suitable points for grasping by grasp confidence scores. In the second stage, based on the selected points, GRN generates a set of grasp proposals. Finally, RN refines the grasp proposals for more accurate and robust predictions. We devise an analytic policy to choose the optimal grasp to be executed from the predicted grasp set. To train \regnet, we construct a large-scale grasp dataset containing collision-free grasp configurations using different parallel-jaw grippers. The experimental results demonstrate that \regnet with the analytic policy achieves the highest success rate of $74.98\%$ in real-world clutter scenes with $20$ objects, significantly outperforming several state-of-the-art methods, including GPD, PointNetGPD, and S4G. The code and dataset are available at https://github.com/zhaobinglei/REGNet-V2.
Prioritized Planning for Target-Oriented Manipulation via Hierarchical Stacking Relationship Prediction
Wu, Zewen, Tang, Jian, Chen, Xingyu, Ma, Chengzhong, Lan, Xuguang, Zheng, Nanning
In scenarios involving the grasping of multiple targets, the learning of stacking relationships between objects is fundamental for robots to execute safely and efficiently. However, current methods lack subdivision for the hierarchy of stacking relationship types. In scenes where objects are mostly stacked in an orderly manner, they are incapable of performing human-like and high-efficient grasping decisions. This paper proposes a perception-planning method to distinguish different stacking types between objects and generate prioritized manipulation order decisions based on given target designations. We utilize a Hierarchical Stacking Relationship Network (HSRN) to discriminate the hierarchy of stacking and generate a refined Stacking Relationship Tree (SRT) for relationship description. Considering that objects with high stacking stability can be grasped together if necessary, we introduce an elaborate decision-making planner based on the Partially Observable Markov Decision Process (POMDP), which leverages observations and generates the least grasp-consuming decision chain with robustness and is suitable for simultaneously specifying multiple targets. To verify our work, we set the scene to the dining table and augment the REGRAD dataset with a set of common tableware models for network training. Experiments show that our method effectively generates grasping decisions that conform to human requirements, and improves the implementation efficiency compared with existing methods on the basis of guaranteeing the success rate.