Ma, Chengqian
Estimating Blood Pressure with a Camera: An Exploratory Study of Ambulatory Patients with Cardiovascular Disease
Curran, Theodore, Ma, Chengqian, Liu, Xin, McDuff, Daniel, Narayanswamy, Girish, Stergiou, George, Patel, Shwetak, Yang, Eugene
Hypertension is a leading cause of morbidity and mortality worldwide. The ability to diagnose and treat hypertension in the ambulatory population is hindered by limited access and poor adherence to current methods of monitoring blood pressure (BP), specifically, cuff-based devices. Remote photoplethysmography (rPPG) evaluates an individual's pulse waveform through a standard camera without physical contact. Cameras are readily available to the majority of the global population via embedded technologies such as smartphones, thus rPPG is a scalable and promising non-invasive method of BP monitoring. The few studies investigating rPPG for BP measurement have excluded high-risk populations, including those with cardiovascular disease (CVD) or its risk factors, as well as subjects in active cardiac arrhythmia. The impact of arrhythmia, like atrial fibrillation, on the prediction of BP using rPPG is currently uncertain. We performed a study to better understand the relationship between rPPG and BP in a real-world sample of ambulatory patients from a cardiology clinic with established CVD or risk factors for CVD. We collected simultaneous rPPG, PPG, BP, ECG, and other vital signs data from 143 subjects while at rest, and used this data plus demographics to train a deep learning model to predict BP. We report that facial rPPG yields a signal that is comparable to finger PPG. Pulse wave analysis (PWA)-based BP estimates on this cohort performed comparably to studies on healthier subjects, and notably, the accuracy of BP prediction in subjects with atrial fibrillation was not inferior to subjects with normal sinus rhythm. In a binary classification task, the rPPG model identified subjects with systolic BP $\geq$ 130 mm Hg with a positive predictive value of 71% (baseline prevalence 48.3%), highlighting the potential of rPPG for hypertension monitoring.
Prompt Recursive Search: A Living Framework with Adaptive Growth in LLM Auto-Prompting
Zhao, Xiangyu, Ma, Chengqian
Large Language Models (LLMs) exhibit remarkable proficiency in addressing a diverse array of tasks within the Natural Language Processing (NLP) domain, with various prompt design strategies significantly augmenting their capabilities. However, these prompts, while beneficial, each possess inherent limitations. The primary prompt design methodologies are twofold: The first, exemplified by the Chain of Thought (CoT), involves manually crafting prompts specific to individual datasets, hence termed Expert-Designed Prompts (EDPs). Once these prompts are established, they are unalterable, and their effectiveness is capped by the expertise of the human designers. When applied to LLMs, the static nature of EDPs results in a uniform approach to both simple and complex problems within the same dataset, leading to the inefficient use of tokens for straightforward issues. The second method involves prompts autonomously generated by the LLM, known as LLM-Derived Prompts (LDPs), which provide tailored solutions to specific problems, mitigating the limitations of EDPs. However, LDPs may encounter a decline in performance when tackling complex problems due to the potential for error accumulation during the solution planning process. To address these challenges, we have conceived a novel Prompt Recursive Search (PRS) framework that leverages the LLM to generate solutions specific to the problem, thereby conserving tokens. The framework incorporates an assessment of problem complexity and an adjustable structure, ensuring a reduction in the likelihood of errors. We have substantiated the efficacy of PRS framework through extensive experiments using LLMs with different numbers of parameters across a spectrum of datasets in various domains. Compared to the CoT method, the PRS method has increased the accuracy on the BBH dataset by 8% using Llama3-7B model, achieving a 22% improvement.
Weather Prediction with Diffusion Guided by Realistic Forecast Processes
Hua, Zhanxiang, He, Yutong, Ma, Chengqian, Anderson-Frey, Alexandra
Weather forecasting remains a crucial yet challenging domain, where recently developed models based on deep learning (DL) have approached the performance of traditional numerical weather prediction (NWP) models. However, these DL models, often complex and resource-intensive, face limitations in flexibility post-training and in incorporating NWP predictions, leading to reliability concerns due to potential unphysical predictions. In response, we introduce a novel method that applies diffusion models (DM) for weather forecasting. In particular, our method can achieve both direct and iterative forecasting with the same modeling framework. Our model is not only capable of generating forecasts independently but also uniquely allows for the integration of NWP predictions, even with varying lead times, during its sampling process. The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community. Additionally, incorporating persistence and climatology data further enhances our model's long-term forecasting stability. Our empirical findings demonstrate the feasibility and generalizability of this approach, suggesting a promising direction for future, more sophisticated diffusion models without the need for retraining.
From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models
Englhardt, Zachary, Ma, Chengqian, Morris, Margaret E., Xu, Xuhai "Orson", Chang, Chun-Cheng, Qin, Lianhui, McDuff, Daniel, Liu, Xin, Patel, Shwetak, Iyer, Vikram
Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.