Goto

Collaborating Authors

 M, Anand Kumar


Towards Unsupervised Question Answering System with Multi-level Summarization for Legal Text

arXiv.org Artificial Intelligence

This paper summarizes Team SCaLAR's work on SemEval-2024 Task 5: Legal Argument Reasoning in Civil Procedure. To address this Binary Classification task, which was daunting due to the complexity of the Legal Texts involved, we propose a simple yet novel similarity and distance-based unsupervised approach to generate labels. Further, we explore the Multi-level fusion of Legal-Bert embeddings using ensemble features, including CNN, GRU, and LSTM. To address the lengthy nature of Legal explanation in the dataset, we introduce T5-based segment-wise summarization, which successfully retained crucial information, enhancing the model's performance. Our unsupervised system witnessed a 20-point increase in macro F1-score on the development set and a 10-point increase on the test set, which is promising given its uncomplicated architecture.


Representation Learning in Continuous-Time Dynamic Signed Networks

arXiv.org Artificial Intelligence

Signed networks allow us to model conflicting relationships and interactions, such as friend/enemy and support/oppose. These signed interactions happen in real-time. Modeling such dynamics of signed networks is crucial to understanding the evolution of polarization in the network and enabling effective prediction of the signed structure (i.e., link signs and signed weights) in the future. However, existing works have modeled either (static) signed networks or dynamic (unsigned) networks but not dynamic signed networks. Since both sign and dynamics inform the graph structure in different ways, it is non-trivial to model how to combine the two features. In this work, we propose a new Graph Neural Network (GNN)-based approach to model dynamic signed networks, named SEMBA: Signed link's Evolution using Memory modules and Balanced Aggregation. Here, the idea is to incorporate the signs of temporal interactions using separate modules guided by balance theory and to evolve the embeddings from a higher-order neighborhood. Experiments on 4 real-world datasets and 4 different tasks demonstrate that SEMBA consistently and significantly outperforms the baselines by up to $80\%$ on the tasks of predicting signs of future links while matching the state-of-the-art performance on predicting the existence of these links in the future. We find that this improvement is due specifically to the superior performance of SEMBA on the minority negative class.


Leveraging Multimodal Behavioral Analytics for Automated Job Interview Performance Assessment and Feedback

arXiv.org Machine Learning

Behavioral cues play a significant part in human communication and cognitive perception. In most professional domains, employee recruitment policies are framed such that both professional skills and personality traits are adequately assessed. Hiring interviews are structured to evaluate expansively a potential employee's suitability for the position - their professional qualifications, interpersonal skills, ability to perform in critical and stressful situations, in the presence of time and resource constraints, etc. Therefore, candidates need to be aware of their positive and negative attributes and be mindful of behavioral cues that might have adverse effects on their success. We propose a multimodal analytical framework that analyzes the candidate in an interview scenario and provides feedback for predefined labels such as engagement, speaking rate, eye contact, etc. We perform a comprehensive analysis that includes the interviewee's facial expressions, speech, and prosodic information, using the video, audio, and text transcripts obtained from the recorded interview. We use these multimodal data sources to construct a composite representation, which is used for training machine learning classifiers to predict the class labels. Such analysis is then used to provide constructive feedback to the interviewee for their behavioral cues and body language. Experimental validation showed that the proposed methodology achieved promising results.


Deep Health Care Text Classification

arXiv.org Artificial Intelligence

Health related social media mining is a valuable apparatus for the early recognition of the diverse antagonistic medicinal conditions. Mostly, the existing methods are based on machine learning with knowledge-based learning. This working note presents the Recurrent neural network (RNN) and Long short-term memory (LSTM) based embedding for automatic health text classification in the social media mining. For each task, two systems are built and that classify the tweet at the tweet level. RNN and LSTM are used for extracting features and non-linear activation function at the last layer facilitates to distinguish the tweets of different categories. The experiments are conducted on 2nd Social Media Mining for Health Applications Shared Task at AMIA 2017. The experiment results are considerable; however the proposed method is appropriate for the health text classification. This is primarily due to the reason that, it doesn't rely on any feature engineering mechanisms.


Vector Space Model as Cognitive Space for Text Classification

arXiv.org Artificial Intelligence

In this era of digitization, knowing the user's sociolect aspects have become essential features to build the user specific recommendation systems. These sociolect aspects could be found by mining the user's language sharing in the form of text in social media and reviews. This paper describes about the experiment that was performed in PAN Author Profiling 2017 shared task. The objective of the task is to find the sociolect aspects of the users from their tweets. The sociolect aspects considered in this experiment are user's gender and native language information. Here user's tweets written in a different language from their native language are represented as Document - Term Matrix with document frequency as the constraint. Further classification is done using the Support Vector Machine by taking gender and native language as target classes. This experiment attains the average accuracy of 73.42% in gender prediction and 76.26% in the native language identification task.